Source code for langchain_anthropic.llms

from __future__ import annotations

import re
import warnings
from collections.abc import AsyncIterator, Iterator, Mapping
from typing import Any, Callable, Optional

import anthropic
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel, LangSmithParams
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.prompt_values import PromptValue
from langchain_core.utils import get_pydantic_field_names
from langchain_core.utils.utils import _build_model_kwargs, from_env, secret_from_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self


class _AnthropicCommon(BaseLanguageModel):
    client: Any = None  #: :meta private:
    async_client: Any = None  #: :meta private:
    model: str = Field(default="claude-3-5-sonnet-latest", alias="model_name")
    """Model name to use."""

    max_tokens: int = Field(default=1024, alias="max_tokens_to_sample")
    """Denotes the number of tokens to predict per generation."""

    temperature: Optional[float] = None
    """A non-negative float that tunes the degree of randomness in generation."""

    top_k: Optional[int] = None
    """Number of most likely tokens to consider at each step."""

    top_p: Optional[float] = None
    """Total probability mass of tokens to consider at each step."""

    streaming: bool = False
    """Whether to stream the results."""

    default_request_timeout: Optional[float] = None
    """Timeout for requests to Anthropic Completion API. Default is 600 seconds."""

    max_retries: int = 2
    """Number of retries allowed for requests sent to the Anthropic Completion API."""

    anthropic_api_url: Optional[str] = Field(
        alias="base_url",
        default_factory=from_env(
            "ANTHROPIC_API_URL",
            default="https://api.anthropic.com",
        ),
    )
    """Base URL for API requests. Only specify if using a proxy or service emulator.

    If a value isn't passed in, will attempt to read the value from
    ``ANTHROPIC_API_URL``. If not set, the default value ``https://api.anthropic.com``
    will be used.
    """

    anthropic_api_key: SecretStr = Field(
        alias="api_key",
        default_factory=secret_from_env("ANTHROPIC_API_KEY", default=""),
    )
    """Automatically read from env var ``ANTHROPIC_API_KEY`` if not provided."""

    HUMAN_PROMPT: Optional[str] = None
    AI_PROMPT: Optional[str] = None
    count_tokens: Optional[Callable[[str], int]] = None
    model_kwargs: dict[str, Any] = Field(default_factory=dict)

    @model_validator(mode="before")
    @classmethod
    def build_extra(cls, values: dict) -> Any:
        all_required_field_names = get_pydantic_field_names(cls)
        return _build_model_kwargs(values, all_required_field_names)

    @model_validator(mode="after")
    def validate_environment(self) -> Self:
        """Validate that api key and python package exists in environment."""
        self.client = anthropic.Anthropic(
            base_url=self.anthropic_api_url,
            api_key=self.anthropic_api_key.get_secret_value(),
            timeout=self.default_request_timeout,
            max_retries=self.max_retries,
        )
        self.async_client = anthropic.AsyncAnthropic(
            base_url=self.anthropic_api_url,
            api_key=self.anthropic_api_key.get_secret_value(),
            timeout=self.default_request_timeout,
            max_retries=self.max_retries,
        )
        # Keep for backward compatibility but not used in Messages API
        self.HUMAN_PROMPT = getattr(anthropic, "HUMAN_PROMPT", None)
        self.AI_PROMPT = getattr(anthropic, "AI_PROMPT", None)
        return self

    @property
    def _default_params(self) -> Mapping[str, Any]:
        """Get the default parameters for calling Anthropic API."""
        d = {
            "max_tokens": self.max_tokens,
            "model": self.model,
        }
        if self.temperature is not None:
            d["temperature"] = self.temperature
        if self.top_k is not None:
            d["top_k"] = self.top_k
        if self.top_p is not None:
            d["top_p"] = self.top_p
        return {**d, **self.model_kwargs}

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {**self._default_params}

    def _get_anthropic_stop(self, stop: Optional[list[str]] = None) -> list[str]:
        if stop is None:
            stop = []
        return stop


[docs] class AnthropicLLM(LLM, _AnthropicCommon): """Anthropic large language model. To use, you should have the environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_anthropic import AnthropicLLM model = AnthropicLLM() """ model_config = ConfigDict( populate_by_name=True, arbitrary_types_allowed=True, ) @model_validator(mode="before") @classmethod def raise_warning(cls, values: dict) -> Any: """Raise warning that this class is deprecated.""" warnings.warn( "This Anthropic LLM is deprecated. " "Please use `from langchain_anthropic import ChatAnthropic` " "instead", stacklevel=2, ) return values @property def _llm_type(self) -> str: """Return type of llm.""" return "anthropic-llm" @property def lc_secrets(self) -> dict[str, str]: return {"anthropic_api_key": "ANTHROPIC_API_KEY"} @classmethod def is_lc_serializable(cls) -> bool: return True @property def _identifying_params(self) -> dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "max_tokens": self.max_tokens, "temperature": self.temperature, "top_k": self.top_k, "top_p": self.top_p, "model_kwargs": self.model_kwargs, "streaming": self.streaming, "default_request_timeout": self.default_request_timeout, "max_retries": self.max_retries, } def _get_ls_params( self, stop: Optional[list[str]] = None, **kwargs: Any, ) -> LangSmithParams: """Get standard params for tracing.""" params = super()._get_ls_params(stop=stop, **kwargs) identifying_params = self._identifying_params if max_tokens := kwargs.get( "max_tokens", identifying_params.get("max_tokens"), ): params["ls_max_tokens"] = max_tokens return params def _format_messages(self, prompt: str) -> list[dict[str, str]]: """Convert prompt to Messages API format.""" messages = [] # Handle legacy prompts that might have HUMAN_PROMPT/AI_PROMPT markers if self.HUMAN_PROMPT and self.HUMAN_PROMPT in prompt: # Split on human/assistant turns parts = prompt.split(self.HUMAN_PROMPT) for _, part in enumerate(parts): if not part.strip(): continue if self.AI_PROMPT and self.AI_PROMPT in part: # Split human and assistant parts human_part, assistant_part = part.split(self.AI_PROMPT, 1) if human_part.strip(): messages.append({"role": "user", "content": human_part.strip()}) if assistant_part.strip(): messages.append( {"role": "assistant", "content": assistant_part.strip()} ) else: # Just human content if part.strip(): messages.append({"role": "user", "content": part.strip()}) else: # Handle modern format or plain text # Clean prompt for Messages API content = re.sub(r"^\n*Human:\s*", "", prompt) content = re.sub(r"\n*Assistant:\s*.*$", "", content) if content.strip(): messages.append({"role": "user", "content": content.strip()}) # Ensure we have at least one message if not messages: messages = [{"role": "user", "content": prompt.strip() or "Hello"}] return messages def _call( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to Anthropic's completion endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. run_manager: Optional callback manager for LLM run. kwargs: Additional keyword arguments to pass to the model. Returns: The string generated by the model. Example: .. code-block:: python prompt = "What are the biggest risks facing humanity?" prompt = f"\n\nHuman: {prompt}\n\nAssistant:" response = model.invoke(prompt) """ if self.streaming: completion = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs, ): completion += chunk.text return completion stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} # Remove parameters not supported by Messages API params = {k: v for k, v in params.items() if k != "max_tokens_to_sample"} response = self.client.messages.create( messages=self._format_messages(prompt), stop_sequences=stop if stop else None, **params, ) return response.content[0].text
[docs] def convert_prompt(self, prompt: PromptValue) -> str: return prompt.to_string()
async def _acall( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Anthropic's completion endpoint asynchronously.""" if self.streaming: completion = "" async for chunk in self._astream( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs, ): completion += chunk.text return completion stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} # Remove parameters not supported by Messages API params = {k: v for k, v in params.items() if k != "max_tokens_to_sample"} response = await self.async_client.messages.create( messages=self._format_messages(prompt), stop_sequences=stop if stop else None, **params, ) return response.content[0].text def _stream( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: r"""Call Anthropic completion_stream and return the resulting generator. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. run_manager: Optional callback manager for LLM run. kwargs: Additional keyword arguments to pass to the model. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} # Remove parameters not supported by Messages API params = {k: v for k, v in params.items() if k != "max_tokens_to_sample"} with self.client.messages.stream( messages=self._format_messages(prompt), stop_sequences=stop if stop else None, **params, ) as stream: for event in stream: if event.type == "content_block_delta" and hasattr(event.delta, "text"): chunk = GenerationChunk(text=event.delta.text) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk async def _astream( self, prompt: str, stop: Optional[list[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: r"""Call Anthropic completion_stream and return the resulting generator. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. run_manager: Optional callback manager for LLM run. kwargs: Additional keyword arguments to pass to the model. Returns: A generator representing the stream of tokens from Anthropic. Example: .. code-block:: python prompt = "Write a poem about a stream." prompt = f"\n\nHuman: {prompt}\n\nAssistant:" generator = anthropic.stream(prompt) for token in generator: yield token """ stop = self._get_anthropic_stop(stop) params = {**self._default_params, **kwargs} # Remove parameters not supported by Messages API params = {k: v for k, v in params.items() if k != "max_tokens_to_sample"} async with self.async_client.messages.stream( messages=self._format_messages(prompt), stop_sequences=stop if stop else None, **params, ) as stream: async for event in stream: if event.type == "content_block_delta" and hasattr(event.delta, "text"): chunk = GenerationChunk(text=event.delta.text) if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk
[docs] def get_num_tokens(self, text: str) -> int: """Calculate number of tokens.""" msg = ( "Anthropic's legacy count_tokens method was removed in anthropic 0.39.0 " "and langchain-anthropic 0.3.0. Please use " "ChatAnthropic.get_num_tokens_from_messages instead." ) raise NotImplementedError( msg, )
[docs] @deprecated(since="0.1.0", removal="1.0.0", alternative="AnthropicLLM") class Anthropic(AnthropicLLM): """Anthropic large language model."""