ChatSparkLLM#
- class langchain_community.chat_models.sparkllm.ChatSparkLLM[source]#
Bases:
BaseChatModel
IFlyTek Spark chat model integration.
- Setup:
To use, you should have the environment variable``IFLYTEK_SPARK_API_KEY``,
IFLYTEK_SPARK_API_SECRET
andIFLYTEK_SPARK_APP_ID
.- Key init args — completion params:
- model: Optional[str]
Name of IFLYTEK SPARK model to use.
- temperature: Optional[float]
Sampling temperature.
- top_k: Optional[float]
What search sampling control to use.
- streaming: Optional[bool]
Whether to stream the results or not.
- Key init args — client params:
- api_key: Optional[str]
IFLYTEK SPARK API KEY. If not passed in will be read from env var IFLYTEK_SPARK_API_KEY.
- api_secret: Optional[str]
IFLYTEK SPARK API SECRET. If not passed in will be read from env var IFLYTEK_SPARK_API_SECRET.
- api_url: Optional[str]
Base URL for API requests.
- timeout: Optional[int]
Timeout for requests.
See full list of supported init args and their descriptions in the params section.
- Instantiate:
from langchain_community.chat_models import ChatSparkLLM chat = ChatSparkLLM( api_key="your-api-key", api_secret="your-api-secret", model='Spark4.0 Ultra', # temperature=..., # other params... )
- Invoke:
messages = [ ("system", "你是一名专业的翻译家,可以将用户的中文翻译为英文。"), ("human", "我喜欢编程。"), ] chat.invoke(messages)
AIMessage( content='I like programming.', response_metadata={ 'token_usage': { 'question_tokens': 3, 'prompt_tokens': 16, 'completion_tokens': 4, 'total_tokens': 20 } }, id='run-af8b3531-7bf7-47f0-bfe8-9262cb2a9d47-0' )
- Stream:
for chunk in chat.stream(messages): print(chunk)
content='I' id='run-fdbb57c2-2d32-4516-b894-6c5a67605d83' content=' like programming' id='run-fdbb57c2-2d32-4516-b894-6c5a67605d83' content='.' id='run-fdbb57c2-2d32-4516-b894-6c5a67605d83'
stream = chat.stream(messages) full = next(stream) for chunk in stream: full += chunk full
AIMessageChunk( content='I like programming.', id='run-aca2fa82-c2e4-4835-b7e2-865ddd3c46cb' )
- Response metadata
ai_msg = chat.invoke(messages) ai_msg.response_metadata
{ 'token_usage': { 'question_tokens': 3, 'prompt_tokens': 16, 'completion_tokens': 4, 'total_tokens': 20 } }
Note
ChatSparkLLM implements the standard
Runnable Interface
. 🏃The
Runnable Interface
has additional methods that are available on runnables, such aswith_config
,with_types
,with_retry
,assign
,bind
,get_graph
, and more.- param cache: BaseCache | bool | None = None#
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if it’s set, otherwise no cache.
If instance of
BaseCache
, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: BaseCallbackManager | None = None#
Deprecated since version 0.1.7: Use
callbacks()
instead. It will be removed in pydantic==1.0.Callback manager to add to the run trace.
- param callbacks: Callbacks = None#
Callbacks to add to the run trace.
- param custom_get_token_ids: Callable[[str], list[int]] | None = None#
Optional encoder to use for counting tokens.
- param disable_streaming: bool | Literal['tool_calling'] = False#
Whether to disable streaming for this model.
If streaming is bypassed, then
stream()
/astream()
/astream_events()
will defer toinvoke()
/ainvoke()
.If True, will always bypass streaming case.
If
'tool_calling'
, will bypass streaming case only when the model is called with atools
keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()
) only when the tools argument is provided. This offers the best of both worlds.If False (default), will always use streaming case if available.
The main reason for this flag is that code might be written using
stream()
and a user may want to swap out a given model for another model whose the implementation does not properly support streaming.
- param metadata: dict[str, Any] | None = None#
Metadata to add to the run trace.
- param model_kwargs: Dict[str, Any] [Optional]#
Holds any model parameters valid for API call not explicitly specified.
- param rate_limiter: BaseRateLimiter | None = None#
An optional rate limiter to use for limiting the number of requests.
- param request_timeout: int = 30 (alias 'timeout')#
request timeout for chat http requests
- param spark_api_key: str | None = None (alias 'api_key')#
Automatically inferred from env var IFLYTEK_SPARK_API_KEY if not provided.
- param spark_api_secret: str | None = None (alias 'api_secret')#
Automatically inferred from env var IFLYTEK_SPARK_API_SECRET if not provided.
- param spark_api_url: str | None = None (alias 'api_url')#
Base URL path for API requests, leave blank if not using a proxy or service emulator.
- param spark_app_id: str | None = None (alias 'app_id')#
Automatically inferred from env var IFLYTEK_SPARK_APP_ID if not provided.
- param spark_llm_domain: str | None = None (alias 'model')#
Model name to use.
- param spark_user_id: str = 'lc_user'#
- param streaming: bool = False#
Whether to stream the results or not.
- param tags: list[str] | None = None#
Tags to add to the run trace.
- param temperature: float = 0.5#
What sampling temperature to use.
- param top_k: int = 4#
What search sampling control to use.
- param verbose: bool [Optional]#
Whether to print out response text.
- __call__(
- messages: list[BaseMessage],
- stop: list[str] | None = None,
- callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None,
- **kwargs: Any,
Deprecated since version 0.1.7: Use
invoke()
instead. It will not be removed until langchain-core==1.0.Call the model.
- Parameters:
messages (list[BaseMessage]) – List of messages.
stop (list[str] | None) – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
**kwargs (Any) – Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns:
The model output message.
- Return type:
- async abatch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs
ainvoke
in parallel usingasyncio.gather
.The default implementation of
batch
works well for IO bound runnables.Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnable
uses an API which supports a batch mode.- Parameters:
inputs (list[Input]) – A list of inputs to the
Runnable
.config (RunnableConfig | list[RunnableConfig] | None) – A config to use when invoking the
Runnable
. The config supports standard keys like'tags'
,'metadata'
for tracing purposes,'max_concurrency'
for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfig
for more details. Defaults to None.return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) – Additional keyword arguments to pass to the
Runnable
.
- Returns:
A list of outputs from the
Runnable
.- Return type:
list[Output]
- async abatch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
ainvoke
in parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) – A list of inputs to the
Runnable
.config (RunnableConfig | Sequence[RunnableConfig] | None) – A config to use when invoking the
Runnable
. The config supports standard keys like'tags'
,'metadata'
for tracing purposes,'max_concurrency'
for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfig
for more details. Defaults to None.return_exceptions (bool) – Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) – Additional keyword arguments to pass to the
Runnable
.
- Yields:
A tuple of the index of the input and the output from the
Runnable
.- Return type:
AsyncIterator[tuple[int, Output | Exception]]
- async ainvoke(
- input: LanguageModelInput,
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Default implementation of
ainvoke
, callsinvoke
from a thread.The default implementation allows usage of async code even if the
Runnable
did not implement a native async version ofinvoke
.Subclasses should override this method if they can run asynchronously.
- Parameters:
input (LanguageModelInput)
config (Optional[RunnableConfig])
stop (Optional[list[str]])
kwargs (Any)
- Return type:
- async astream(
- input: LanguageModelInput,
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Default implementation of
astream
, which callsainvoke
.Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) – The input to the
Runnable
.config (Optional[RunnableConfig]) – The config to use for the
Runnable
. Defaults to None.kwargs (Any) – Additional keyword arguments to pass to the
Runnable
.stop (Optional[list[str]])
- Yields:
The output of the
Runnable
.- Return type:
AsyncIterator[BaseMessageChunk]
- async astream_events(
- input: Any,
- config: RunnableConfig | None = None,
- *,
- version: Literal['v1', 'v2'] = 'v2',
- include_names: Sequence[str] | None = None,
- include_types: Sequence[str] | None = None,
- include_tags: Sequence[str] | None = None,
- exclude_names: Sequence[str] | None = None,
- exclude_types: Sequence[str] | None = None,
- exclude_tags: Sequence[str] | None = None,
- **kwargs: Any,
Generate a stream of events.
Use to create an iterator over
StreamEvents
that provide real-time information about the progress of theRunnable
, includingStreamEvents
from intermediate results.A
StreamEvent
is a dictionary with the following schema:event
: str - Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: str - The name of theRunnable
that generated the event.run_id
: str - randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: list[str] - The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: Optional[list[str]] - The tags of theRunnable
that generated the event.metadata
: Optional[dict[str, Any]] - The metadata of theRunnable
that generated the event.data
: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event
name
chunk
input
output
on_chat_model_start
[model name]
{"messages": [[SystemMessage, HumanMessage]]}
on_chat_model_stream
[model name]
AIMessageChunk(content="hello")
on_chat_model_end
[model name]
{"messages": [[SystemMessage, HumanMessage]]}
AIMessageChunk(content="hello world")
on_llm_start
[model name]
{'input': 'hello'}
on_llm_stream
[model name]
``’Hello’ ``
on_llm_end
[model name]
'Hello human!'
on_chain_start
format_docs
on_chain_stream
format_docs
'hello world!, goodbye world!'
on_chain_end
format_docs
[Document(...)]
'hello world!, goodbye world!'
on_tool_start
some_tool
{"x": 1, "y": "2"}
on_tool_end
some_tool
{"x": 1, "y": "2"}
on_retriever_start
[retriever name]
{"query": "hello"}
on_retriever_end
[retriever name]
{"query": "hello"}
[Document(...), ..]
on_prompt_start
[template_name]
{"question": "hello"}
on_prompt_end
[template_name]
{"question": "hello"}
ChatPromptValue(messages: [SystemMessage, ...])
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs
:def format_docs(docs: list[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool
:@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt
:template = ChatPromptTemplate.from_messages( [("system", "You are Cat Agent 007"), ("human", "{question}")] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) – The input to the
Runnable
.config (Optional[RunnableConfig]) – The config to use for the
Runnable
.version (Literal['v1', 'v2']) – The version of the schema to use either
'v2'
or'v1'
. Users should use'v2'
.'v1'
is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in'v2'
.include_names (Optional[Sequence[str]]) – Only include events from
Runnables
with matching names.include_types (Optional[Sequence[str]]) – Only include events from
Runnables
with matching types.include_tags (Optional[Sequence[str]]) – Only include events from
Runnables
with matching tags.exclude_names (Optional[Sequence[str]]) – Exclude events from
Runnables
with matching names.exclude_types (Optional[Sequence[str]]) – Exclude events from
Runnables
with matching types.exclude_tags (Optional[Sequence[str]]) – Exclude events from
Runnables
with matching tags.kwargs (Any) – Additional keyword arguments to pass to the
Runnable
. These will be passed toastream_log
as this implementation ofastream_events
is built on top ofastream_log
.
- Yields:
An async stream of
StreamEvents
.- Raises:
NotImplementedError – If the version is not
'v1'
or'v2'
.- Return type:
AsyncIterator[StreamEvent]
- batch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnable
uses an API which supports a batch mode.- Parameters:
inputs (list[Input])
config (RunnableConfig | list[RunnableConfig] | None)
return_exceptions (bool)
kwargs (Any | None)
- Return type:
list[Output]
- batch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
invoke
in parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input])
config (RunnableConfig | Sequence[RunnableConfig] | None)
return_exceptions (bool)
kwargs (Any | None)
- Return type:
Iterator[tuple[int, Output | Exception]]
- bind(
- **kwargs: Any,
Bind arguments to a
Runnable
, returning a newRunnable
.Useful when a
Runnable
in a chain requires an argument that is not in the output of the previousRunnable
or included in the user input.- Parameters:
kwargs (Any) – The arguments to bind to the
Runnable
.- Returns:
A new
Runnable
with the arguments bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model='llama2') # Without bind. chain = ( llm | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = ( llm.bind(stop=["three"]) | StrOutputParser() ) chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- bind_tools(
- tools: Sequence[Dict[str, Any] | type | Callable | BaseTool],
- *,
- tool_choice: str | None = None,
- **kwargs: Any,
Bind tools to the model.
- Parameters:
tools (Sequence[Union[Dict[str, Any], type, Callable, BaseTool]]) – Sequence of tools to bind to the model.
tool_choice (Optional[Union[str]]) – The tool to use. If “any” then any tool can be used.
kwargs (Any)
- Returns:
A Runnable that returns a message.
- Return type:
Runnable[LanguageModelInput, BaseMessage]
- configurable_alternatives(
- which: ConfigurableField,
- *,
- default_key: str = 'default',
- prefix_keys: bool = False,
- **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
Configure alternatives for
Runnables
that can be set at runtime.- Parameters:
which (ConfigurableField) – The
ConfigurableField
instance that will be used to select the alternative.default_key (str) – The default key to use if no alternative is selected. Defaults to
'default'
.prefix_keys (bool) – Whether to prefix the keys with the
ConfigurableField
id. Defaults to False.**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) – A dictionary of keys to
Runnable
instances or callables that returnRunnable
instances.
- Returns:
A new
Runnable
with the alternatives configured.- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-7-sonnet-20250219" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI() ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config( configurable={"llm": "openai"} ).invoke("which organization created you?").content )
- configurable_fields( ) RunnableSerializable #
Configure particular
Runnable
fields at runtime.- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) – A dictionary of
ConfigurableField
instances to configure.- Returns:
A new
Runnable
with the fields configured.- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print("max_tokens_200: ", model.with_config( configurable={"output_token_number": 200} ).invoke("tell me something about chess").content )
- get_num_tokens(text: str) int #
Get the number of tokens present in the text.
Useful for checking if an input fits in a model’s context window.
- Parameters:
text (str) – The string input to tokenize.
- Returns:
The integer number of tokens in the text.
- Return type:
int
- get_num_tokens_from_messages(
- messages: list[BaseMessage],
- tools: Sequence | None = None,
Get the number of tokens in the messages.
Useful for checking if an input fits in a model’s context window.
Note
The base implementation of
get_num_tokens_from_messages
ignores tool schemas.- Parameters:
messages (list[BaseMessage]) – The message inputs to tokenize.
tools (Sequence | None) – If provided, sequence of dict,
BaseModel
, function, orBaseTools
to be converted to tool schemas.
- Returns:
The sum of the number of tokens across the messages.
- Return type:
int
- get_token_ids(text: str) list[int] #
Return the ordered ids of the tokens in a text.
- Parameters:
text (str) – The string input to tokenize.
- Returns:
A list of ids corresponding to the tokens in the text, in order they occur in the text.
- Return type:
list[int]
- invoke(
- input: LanguageModelInput,
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Transform a single input into an output.
- Parameters:
input (LanguageModelInput) – The input to the
Runnable
.config (Optional[RunnableConfig]) – A config to use when invoking the
Runnable
. The config supports standard keys like'tags'
,'metadata'
for tracing purposes,'max_concurrency'
for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfig
for more details. Defaults to None.stop (Optional[list[str]])
kwargs (Any)
- Returns:
The output of the
Runnable
.- Return type:
- stream(
- input: LanguageModelInput,
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Default implementation of
stream
, which callsinvoke
.Subclasses should override this method if they support streaming output.
- Parameters:
input (LanguageModelInput) – The input to the
Runnable
.config (Optional[RunnableConfig]) – The config to use for the
Runnable
. Defaults to None.kwargs (Any) – Additional keyword arguments to pass to the
Runnable
.stop (Optional[list[str]])
- Yields:
The output of the
Runnable
.- Return type:
Iterator[BaseMessageChunk]
- with_alisteners(
- *,
- on_start: AsyncListener | None = None,
- on_end: AsyncListener | None = None,
- on_error: AsyncListener | None = None,
Bind async lifecycle listeners to a
Runnable
, returning a newRunnable
.The Run object contains information about the run, including its
id
,type
,input
,output
,error
,start_time
,end_time
, and any tags or metadata added to the run.- Parameters:
on_start (Optional[AsyncListener]) – Called asynchronously before the
Runnable
starts running, with theRun
object. Defaults to None.on_end (Optional[AsyncListener]) – Called asynchronously after the
Runnable
finishes running, with theRun
object. Defaults to None.on_error (Optional[AsyncListener]) – Called asynchronously if the
Runnable
throws an error, with theRun
object. Defaults to None.
- Returns:
A new
Runnable
with the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda, Runnable from datetime import datetime, timezone import time import asyncio def format_t(timestamp: float) -> str: return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat() async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())}") await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())}") await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2025-03-01T07:05:22.875378+00:00 on start callback starts at 2025-03-01T07:05:22.875495+00:00 on start callback ends at 2025-03-01T07:05:25.878862+00:00 on start callback ends at 2025-03-01T07:05:25.878947+00:00 Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00 Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00 Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00 on end callback starts at 2025-03-01T07:05:27.882360+00:00 Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00 on end callback starts at 2025-03-01T07:05:28.882428+00:00 on end callback ends at 2025-03-01T07:05:29.883893+00:00 on end callback ends at 2025-03-01T07:05:30.884831+00:00
- with_config(
- config: RunnableConfig | None = None,
- **kwargs: Any,
Bind config to a
Runnable
, returning a newRunnable
.- Parameters:
config (RunnableConfig | None) – The config to bind to the
Runnable
.kwargs (Any) – Additional keyword arguments to pass to the
Runnable
.
- Returns:
A new
Runnable
with the config bound.- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output] #
Add fallbacks to a
Runnable
, returning a newRunnable
.The new
Runnable
will try the originalRunnable
, and then each fallback in order, upon failures.- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original
Runnable
fails.exceptions_to_handle (tuple[type[BaseException], ...]) – A tuple of exception types to handle. Defaults to
(Exception,)
.exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnable
and its fallbacks must accept a dictionary as input. Defaults to None.
- Returns:
A new
Runnable
that will try the originalRunnable
, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print(''.join(runnable.stream({}))) #foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) – A sequence of runnables to try if the original
Runnable
fails.exceptions_to_handle (tuple[type[BaseException], ...]) – A tuple of exception types to handle.
exception_key (Optional[str]) – If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnable
and its fallbacks must accept a dictionary as input.
- Returns:
A new
Runnable
that will try the originalRunnable
, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(
- *,
- on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
Bind lifecycle listeners to a
Runnable
, returning a newRunnable
.The Run object contains information about the run, including its
id
,type
,input
,output
,error
,start_time
,end_time
, and any tags or metadata added to the run.- Parameters:
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called before the
Runnable
starts running, with theRun
object. Defaults to None.on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called after the
Runnable
finishes running, with theRun
object. Defaults to None.on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) – Called if the
Runnable
throws an error, with theRun
object. Defaults to None.
- Returns:
A new
Runnable
with the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep : int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, exponential_jitter_params: Optional[ExponentialJitterParams] = None, stop_after_attempt: int = 3) Runnable[Input, Output] #
Create a new Runnable that retries the original Runnable on exceptions.
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) – A tuple of exception types to retry on. Defaults to (Exception,).
wait_exponential_jitter (bool) – Whether to add jitter to the wait time between retries. Defaults to True.
stop_after_attempt (int) – The maximum number of attempts to make before giving up. Defaults to 3.
exponential_jitter_params (Optional[ExponentialJitterParams]) – Parameters for
tenacity.wait_exponential_jitter
. Namely:initial
,max
,exp_base
, andjitter
(all float values).
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert (count == 2)
- with_structured_output(
- schema: Dict | type,
- *,
- include_raw: bool = False,
- **kwargs: Any,
Model wrapper that returns outputs formatted to match the given schema.
- Parameters:
schema (Union[Dict, type]) –
The output schema. Can be passed in as:
an OpenAI function/tool schema,
a JSON Schema,
a TypedDict class,
or a Pydantic class.
If
schema
is a Pydantic class then the model output will be a Pydantic instance of that class, and the model-generated fields will be validated by the Pydantic class. Otherwise the model output will be a dict and will not be validated. Seelangchain_core.utils.function_calling.convert_to_openai_tool()
for more on how to properly specify types and descriptions of schema fields when specifying a Pydantic or TypedDict class.include_raw (bool) – If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys
'raw'
,'parsed'
, and'parsing_error'
.kwargs (Any)
- Returns:
A Runnable that takes same inputs as a
langchain_core.language_models.chat.BaseChatModel
.If
include_raw
is False andschema
is a Pydantic class, Runnable outputs an instance ofschema
(i.e., a Pydantic object).Otherwise, if
include_raw
is False then Runnable outputs a dict.If
include_raw
is True, then Runnable outputs a dict with keys:'raw'
: BaseMessage'parsed'
: None if there was a parsing error, otherwise the type depends on theschema
as described above.'parsing_error'
: Optional[BaseException]
- Return type:
- Example: Pydantic schema (include_raw=False):
from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # )
- Example: Pydantic schema (include_raw=True):
from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # }
- Example: Dict schema (include_raw=False):
from pydantic import BaseModel from langchain_core.utils.function_calling import convert_to_openai_tool class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str dict_schema = convert_to_openai_tool(AnswerWithJustification) llm = ChatModel(model="model-name", temperature=0) structured_llm = llm.with_structured_output(dict_schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # }
Changed in version 0.2.26: Added support for TypedDict class.
- with_types(
- *,
- input_type: type[Input] | None = None,
- output_type: type[Output] | None = None,
Bind input and output types to a
Runnable
, returning a newRunnable
.- Parameters:
input_type (type[Input] | None) – The input type to bind to the
Runnable
. Defaults to None.output_type (type[Output] | None) – The output type to bind to the
Runnable
. Defaults to None.
- Returns:
A new Runnable with the types bound.
- Return type:
Runnable[Input, Output]
Examples using ChatSparkLLM