Source code for langchain.agents.structured_chat.output_parser

from __future__ import annotations

import json
import logging
import re
from typing import Optional, Pattern, Union

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from pydantic import Field

from langchain.agents.agent import AgentOutputParser
from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS
from langchain.output_parsers import OutputFixingParser

logger = logging.getLogger(__name__)


[docs] class StructuredChatOutputParser(AgentOutputParser): """Output parser for the structured chat agent.""" format_instructions: str = FORMAT_INSTRUCTIONS """Default formatting instructions""" pattern: Pattern = re.compile(r"```(?:json\s+)?(\W.*?)```", re.DOTALL) """Regex pattern to parse the output."""
[docs] def get_format_instructions(self) -> str: """Returns formatting instructions for the given output parser.""" return self.format_instructions
[docs] def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: action_match = self.pattern.search(text) if action_match is not None: response = json.loads(action_match.group(1).strip(), strict=False) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: return AgentAction( response["action"], response.get("action_input", {}), text ) else: return AgentFinish({"output": text}, text) except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e
@property def _type(self) -> str: return "structured_chat"
[docs] class StructuredChatOutputParserWithRetries(AgentOutputParser): """Output parser with retries for the structured chat agent.""" base_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) """The base parser to use.""" output_fixing_parser: Optional[OutputFixingParser] = None """The output fixing parser to use."""
[docs] def get_format_instructions(self) -> str: return FORMAT_INSTRUCTIONS
[docs] def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: if self.output_fixing_parser is not None: parsed_obj: Union[AgentAction, AgentFinish] = ( self.output_fixing_parser.parse(text) ) else: parsed_obj = self.base_parser.parse(text) return parsed_obj except Exception as e: raise OutputParserException(f"Could not parse LLM output: {text}") from e
[docs] @classmethod def from_llm( cls, llm: Optional[BaseLanguageModel] = None, base_parser: Optional[StructuredChatOutputParser] = None, ) -> StructuredChatOutputParserWithRetries: if llm is not None: base_parser = base_parser or StructuredChatOutputParser() output_fixing_parser: OutputFixingParser = OutputFixingParser.from_llm( llm=llm, parser=base_parser ) return cls(output_fixing_parser=output_fixing_parser) elif base_parser is not None: return cls(base_parser=base_parser) else: return cls()
@property def _type(self) -> str: return "structured_chat_with_retries"