"""Combine documents by doing a first pass and then refining on more documents."""
from __future__ import annotations
from typing import Any, Dict, List, Tuple
from langchain_core._api import deprecated
from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.prompts import BasePromptTemplate, format_document
from langchain_core.prompts.prompt import PromptTemplate
from pydantic import ConfigDict, Field, model_validator
from langchain.chains.combine_documents.base import (
BaseCombineDocumentsChain,
)
from langchain.chains.llm import LLMChain
def _get_default_document_prompt() -> PromptTemplate:
return PromptTemplate(input_variables=["page_content"], template="{page_content}")
[docs]
@deprecated(
since="0.3.1",
removal="1.0",
message=(
"This class is deprecated. Please see the migration guide here for "
"a recommended replacement: "
"https://python.langchain.com/docs/versions/migrating_chains/refine_docs_chain/" # noqa: E501
),
)
class RefineDocumentsChain(BaseCombineDocumentsChain):
"""Combine documents by doing a first pass and then refining on more documents.
This algorithm first calls `initial_llm_chain` on the first document, passing
that first document in with the variable name `document_variable_name`, and
produces a new variable with the variable name `initial_response_name`.
Then, it loops over every remaining document. This is called the "refine" step.
It calls `refine_llm_chain`,
passing in that document with the variable name `document_variable_name`
as well as the previous response with the variable name `initial_response_name`.
Example:
.. code-block:: python
from langchain.chains import RefineDocumentsChain, LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_community.llms import OpenAI
# This controls how each document will be formatted. Specifically,
# it will be passed to `format_document` - see that function for more
# details.
document_prompt = PromptTemplate(
input_variables=["page_content"],
template="{page_content}"
)
document_variable_name = "context"
llm = OpenAI()
# The prompt here should take as an input variable the
# `document_variable_name`
prompt = PromptTemplate.from_template(
"Summarize this content: {context}"
)
initial_llm_chain = LLMChain(llm=llm, prompt=prompt)
initial_response_name = "prev_response"
# The prompt here should take as an input variable the
# `document_variable_name` as well as `initial_response_name`
prompt_refine = PromptTemplate.from_template(
"Here's your first summary: {prev_response}. "
"Now add to it based on the following context: {context}"
)
refine_llm_chain = LLMChain(llm=llm, prompt=prompt_refine)
chain = RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
)
"""
initial_llm_chain: LLMChain
"""LLM chain to use on initial document."""
refine_llm_chain: LLMChain
"""LLM chain to use when refining."""
document_variable_name: str
"""The variable name in the initial_llm_chain to put the documents in.
If only one variable in the initial_llm_chain, this need not be provided."""
initial_response_name: str
"""The variable name to format the initial response in when refining."""
document_prompt: BasePromptTemplate = Field(
default_factory=_get_default_document_prompt
)
"""Prompt to use to format each document, gets passed to `format_document`."""
return_intermediate_steps: bool = False
"""Return the results of the refine steps in the output."""
@property
def output_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
_output_keys = super().output_keys
if self.return_intermediate_steps:
_output_keys = _output_keys + ["intermediate_steps"]
return _output_keys
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def get_return_intermediate_steps(cls, values: Dict) -> Any:
"""For backwards compatibility."""
if "return_refine_steps" in values:
values["return_intermediate_steps"] = values["return_refine_steps"]
del values["return_refine_steps"]
return values
@model_validator(mode="before")
@classmethod
def get_default_document_variable_name(cls, values: Dict) -> Any:
"""Get default document variable name, if not provided."""
if "initial_llm_chain" not in values:
raise ValueError("initial_llm_chain must be provided")
llm_chain_variables = values["initial_llm_chain"].prompt.input_variables
if "document_variable_name" not in values:
if len(llm_chain_variables) == 1:
values["document_variable_name"] = llm_chain_variables[0]
else:
raise ValueError(
"document_variable_name must be provided if there are "
"multiple llm_chain input_variables"
)
else:
if values["document_variable_name"] not in llm_chain_variables:
raise ValueError(
f"document_variable_name {values['document_variable_name']} was "
f"not found in llm_chain input_variables: {llm_chain_variables}"
)
return values
[docs]
def combine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Combine by mapping first chain over all, then stuffing into final chain.
Args:
docs: List of documents to combine
callbacks: Callbacks to be passed through
**kwargs: additional parameters to be passed to LLM calls (like other
input variables besides the documents)
Returns:
The first element returned is the single string output. The second
element returned is a dictionary of other keys to return.
"""
inputs = self._construct_initial_inputs(docs, **kwargs)
res = self.initial_llm_chain.predict(callbacks=callbacks, **inputs)
refine_steps = [res]
for doc in docs[1:]:
base_inputs = self._construct_refine_inputs(doc, res)
inputs = {**base_inputs, **kwargs}
res = self.refine_llm_chain.predict(callbacks=callbacks, **inputs)
refine_steps.append(res)
return self._construct_result(refine_steps, res)
[docs]
async def acombine_docs(
self, docs: List[Document], callbacks: Callbacks = None, **kwargs: Any
) -> Tuple[str, dict]:
"""Async combine by mapping a first chain over all, then stuffing
into a final chain.
Args:
docs: List of documents to combine
callbacks: Callbacks to be passed through
**kwargs: additional parameters to be passed to LLM calls (like other
input variables besides the documents)
Returns:
The first element returned is the single string output. The second
element returned is a dictionary of other keys to return.
"""
inputs = self._construct_initial_inputs(docs, **kwargs)
res = await self.initial_llm_chain.apredict(callbacks=callbacks, **inputs)
refine_steps = [res]
for doc in docs[1:]:
base_inputs = self._construct_refine_inputs(doc, res)
inputs = {**base_inputs, **kwargs}
res = await self.refine_llm_chain.apredict(callbacks=callbacks, **inputs)
refine_steps.append(res)
return self._construct_result(refine_steps, res)
def _construct_result(self, refine_steps: List[str], res: str) -> Tuple[str, dict]:
if self.return_intermediate_steps:
extra_return_dict = {"intermediate_steps": refine_steps}
else:
extra_return_dict = {}
return res, extra_return_dict
def _construct_refine_inputs(self, doc: Document, res: str) -> Dict[str, Any]:
return {
self.document_variable_name: format_document(doc, self.document_prompt),
self.initial_response_name: res,
}
def _construct_initial_inputs(
self, docs: List[Document], **kwargs: Any
) -> Dict[str, Any]:
base_info = {"page_content": docs[0].page_content}
base_info.update(docs[0].metadata)
document_info = {k: base_info[k] for k in self.document_prompt.input_variables}
base_inputs: dict = {
self.document_variable_name: self.document_prompt.format(**document_info)
}
inputs = {**base_inputs, **kwargs}
return inputs
@property
def _chain_type(self) -> str:
return "refine_documents_chain"