Source code for langchain.chains.llm

"""Chain that just formats a prompt and calls an LLM."""

from __future__ import annotations

import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast

from langchain_core._api import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManager,
    AsyncCallbackManagerForChainRun,
    CallbackManager,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain_core.language_models import (
    BaseLanguageModel,
    LanguageModelInput,
)
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from langchain_core.prompt_values import PromptValue
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.runnables import (
    Runnable,
    RunnableBinding,
    RunnableBranch,
    RunnableWithFallbacks,
)
from langchain_core.runnables.configurable import DynamicRunnable
from langchain_core.utils.input import get_colored_text
from pydantic import ConfigDict, Field

from langchain.chains.base import Chain


[docs] @deprecated( since="0.1.17", alternative="RunnableSequence, e.g., `prompt | llm`", removal="1.0", ) class LLMChain(Chain): """Chain to run queries against LLMs. This class is deprecated. See below for an example implementation using LangChain runnables: .. code-block:: python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_openai import OpenAI prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = OpenAI() chain = prompt | llm | StrOutputParser() chain.invoke("your adjective here") Example: .. code-block:: python from langchain.chains import LLMChain from langchain_community.llms import OpenAI from langchain_core.prompts import PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) """ @classmethod def is_lc_serializable(self) -> bool: return True prompt: BasePromptTemplate """Prompt object to use.""" llm: Union[ Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage] ] """Language model to call.""" output_key: str = "text" #: :meta private: output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser) """Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise.""" return_final_only: bool = True """Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation.""" llm_kwargs: dict = Field(default_factory=dict) model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @property def input_keys(self) -> List[str]: """Will be whatever keys the prompt expects. :meta private: """ return self.prompt.input_variables @property def output_keys(self) -> List[str]: """Will always return text key. :meta private: """ if self.return_final_only: return [self.output_key] else: return [self.output_key, "full_generation"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = self.generate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def generate( self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) callbacks = run_manager.get_child() if run_manager else None if isinstance(self.llm, BaseLanguageModel): return self.llm.generate_prompt( prompts, stop, callbacks=callbacks, **self.llm_kwargs, ) else: results = self.llm.bind(stop=stop, **self.llm_kwargs).batch( cast(List, prompts), {"callbacks": callbacks} ) generations: List[List[Generation]] = [] for res in results: if isinstance(res, BaseMessage): generations.append([ChatGeneration(message=res)]) else: generations.append([Generation(text=res)]) return LLMResult(generations=generations) async def agenerate( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> LLMResult: """Generate LLM result from inputs.""" prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager) callbacks = run_manager.get_child() if run_manager else None if isinstance(self.llm, BaseLanguageModel): return await self.llm.agenerate_prompt( prompts, stop, callbacks=callbacks, **self.llm_kwargs, ) else: results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch( cast(List, prompts), {"callbacks": callbacks} ) generations: List[List[Generation]] = [] for res in results: if isinstance(res, BaseMessage): generations.append([ChatGeneration(message=res)]) else: generations.append([Generation(text=res)]) return LLMResult(generations=generations)
[docs] def prep_prompts( self, input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if len(input_list) == 0: return [], stop if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop
[docs] async def aprep_prompts( self, input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Tuple[List[PromptValue], Optional[List[str]]]: """Prepare prompts from inputs.""" stop = None if len(input_list) == 0: return [], stop if "stop" in input_list[0]: stop = input_list[0]["stop"] prompts = [] for inputs in input_list: selected_inputs = {k: inputs[k] for k in self.prompt.input_variables} prompt = self.prompt.format_prompt(**selected_inputs) _colored_text = get_colored_text(prompt.to_string(), "green") _text = "Prompt after formatting:\n" + _colored_text if run_manager: await run_manager.on_text(_text, end="\n", verbose=self.verbose) if "stop" in inputs and inputs["stop"] != stop: raise ValueError( "If `stop` is present in any inputs, should be present in all." ) prompts.append(prompt) return prompts, stop
[docs] def apply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = CallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = callback_manager.on_chain_start( None, {"input_list": input_list}, name=self.get_name(), ) try: response = self.generate(input_list, run_manager=run_manager) except BaseException as e: run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) run_manager.on_chain_end({"outputs": outputs}) return outputs
[docs] async def aapply( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> List[Dict[str, str]]: """Utilize the LLM generate method for speed gains.""" callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, self.verbose ) run_manager = await callback_manager.on_chain_start( None, {"input_list": input_list}, name=self.get_name(), ) try: response = await self.agenerate(input_list, run_manager=run_manager) except BaseException as e: await run_manager.on_chain_error(e) raise e outputs = self.create_outputs(response) await run_manager.on_chain_end({"outputs": outputs}) return outputs
@property def _run_output_key(self) -> str: return self.output_key
[docs] def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]: """Create outputs from response.""" result = [ # Get the text of the top generated string. { self.output_key: self.output_parser.parse_result(generation), "full_generation": generation, } for generation in llm_result.generations ] if self.return_final_only: result = [{self.output_key: r[self.output_key]} for r in result] return result
async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = await self.agenerate([inputs], run_manager=run_manager) return self.create_outputs(response)[0] def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return self(kwargs, callbacks=callbacks)[self.output_key] async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str: """Format prompt with kwargs and pass to LLM. Args: callbacks: Callbacks to pass to LLMChain **kwargs: Keys to pass to prompt template. Returns: Completion from LLM. Example: .. code-block:: python completion = llm.predict(adjective="funny") """ return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
[docs] def predict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, Any]]: """Call predict and then parse the results.""" warnings.warn( "The predict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = self.predict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result
[docs] async def apredict_and_parse( self, callbacks: Callbacks = None, **kwargs: Any ) -> Union[str, List[str], Dict[str, str]]: """Call apredict and then parse the results.""" warnings.warn( "The apredict_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = await self.apredict(callbacks=callbacks, **kwargs) if self.prompt.output_parser is not None: return self.prompt.output_parser.parse(result) else: return result
[docs] def apply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" warnings.warn( "The apply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = self.apply(input_list, callbacks=callbacks) return self._parse_generation(result)
def _parse_generation( self, generation: List[Dict[str, str]] ) -> Sequence[Union[str, List[str], Dict[str, str]]]: if self.prompt.output_parser is not None: return [ self.prompt.output_parser.parse(res[self.output_key]) for res in generation ] else: return generation
[docs] async def aapply_and_parse( self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None ) -> Sequence[Union[str, List[str], Dict[str, str]]]: """Call apply and then parse the results.""" warnings.warn( "The aapply_and_parse method is deprecated, " "instead pass an output parser directly to LLMChain." ) result = await self.aapply(input_list, callbacks=callbacks) return self._parse_generation(result)
@property def _chain_type(self) -> str: return "llm_chain"
[docs] @classmethod def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain: """Create LLMChain from LLM and template.""" prompt_template = PromptTemplate.from_template(template) return cls(llm=llm, prompt=prompt_template)
def _get_num_tokens(self, text: str) -> int: return _get_language_model(self.llm).get_num_tokens(text)
def _get_language_model(llm_like: Runnable) -> BaseLanguageModel: if isinstance(llm_like, BaseLanguageModel): return llm_like elif isinstance(llm_like, RunnableBinding): return _get_language_model(llm_like.bound) elif isinstance(llm_like, RunnableWithFallbacks): return _get_language_model(llm_like.runnable) elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)): return _get_language_model(llm_like.default) else: raise ValueError( f"Unable to extract BaseLanguageModel from llm_like object of type " f"{type(llm_like)}" )