Source code for langchain.chains.moderation
"""Pass input through a moderation endpoint."""
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_core.utils import check_package_version, get_from_dict_or_env
from pydantic import Field, model_validator
from langchain.chains.base import Chain
[docs]
class OpenAIModerationChain(Chain):
"""Pass input through a moderation endpoint.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chains import OpenAIModerationChain
moderation = OpenAIModerationChain()
"""
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model_name: Optional[str] = None
"""Moderation model name to use."""
error: bool = False
"""Whether or not to error if bad content was found."""
input_key: str = "input" #: :meta private:
output_key: str = "output" #: :meta private:
openai_api_key: Optional[str] = None
openai_organization: Optional[str] = None
openai_pre_1_0: bool = Field(default=False)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
openai_organization = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import openai
openai.api_key = openai_api_key
if openai_organization:
openai.organization = openai_organization
values["openai_pre_1_0"] = False
try:
check_package_version("openai", gte_version="1.0")
except ValueError:
values["openai_pre_1_0"] = True
if values["openai_pre_1_0"]:
values["client"] = openai.Moderation
else:
values["client"] = openai.OpenAI()
values["async_client"] = openai.AsyncOpenAI()
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return output key.
:meta private:
"""
return [self.output_key]
def _moderate(self, text: str, results: Any) -> str:
if self.openai_pre_1_0:
condition = results["flagged"]
else:
condition = results.flagged
if condition:
error_str = "Text was found that violates OpenAI's content policy."
if self.error:
raise ValueError(error_str)
else:
return error_str
return text
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
text = inputs[self.input_key]
if self.openai_pre_1_0:
results = self.client.create(text)
output = self._moderate(text, results["results"][0])
else:
results = self.client.moderations.create(input=text)
output = self._moderate(text, results.results[0])
return {self.output_key: output}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
if self.openai_pre_1_0:
return await super()._acall(inputs, run_manager=run_manager)
text = inputs[self.input_key]
results = await self.async_client.moderations.create(input=text)
output = self._moderate(text, results.results[0])
return {self.output_key: output}