from __future__ import annotations
import json
import re
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import requests
from langchain_core._api import deprecated
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import BasePromptTemplate, ChatPromptTemplate
from langchain_core.utils.input import get_colored_text
from requests import Response
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain
if TYPE_CHECKING:
from langchain_community.utilities.openapi import OpenAPISpec
from openapi_pydantic import Parameter
def _get_description(o: Any, prefer_short: bool) -> Optional[str]:
summary = getattr(o, "summary", None)
description = getattr(o, "description", None)
if prefer_short:
return summary or description
return description or summary
def _format_url(url: str, path_params: dict) -> str:
expected_path_param = re.findall(r"{(.*?)}", url)
new_params = {}
for param in expected_path_param:
clean_param = param.lstrip(".;").rstrip("*")
val = path_params[clean_param]
if isinstance(val, list):
if param[0] == ".":
sep = "." if param[-1] == "*" else ","
new_val = "." + sep.join(val)
elif param[0] == ";":
sep = f"{clean_param}=" if param[-1] == "*" else ","
new_val = f"{clean_param}=" + sep.join(val)
else:
new_val = ",".join(val)
elif isinstance(val, dict):
kv_sep = "=" if param[-1] == "*" else ","
kv_strs = [kv_sep.join((k, v)) for k, v in val.items()]
if param[0] == ".":
sep = "."
new_val = "."
elif param[0] == ";":
sep = ";"
new_val = ";"
else:
sep = ","
new_val = ""
new_val += sep.join(kv_strs)
else:
if param[0] == ".":
new_val = f".{val}"
elif param[0] == ";":
new_val = f";{clean_param}={val}"
else:
new_val = val
new_params[param] = new_val
return url.format(**new_params)
def _openapi_params_to_json_schema(params: List[Parameter], spec: OpenAPISpec) -> dict:
properties = {}
required = []
for p in params:
if p.param_schema:
schema = spec.get_schema(p.param_schema)
else:
media_type_schema = list(p.content.values())[0].media_type_schema # type: ignore
schema = spec.get_schema(media_type_schema)
if p.description and not schema.description:
schema.description = p.description
properties[p.name] = json.loads(schema.json(exclude_none=True))
if p.required:
required.append(p.name)
return {"type": "object", "properties": properties, "required": required}
[docs]
def openapi_spec_to_openai_fn(
spec: OpenAPISpec,
) -> Tuple[List[Dict[str, Any]], Callable]:
"""Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI
functions.
Args:
spec: OpenAPI spec to convert.
Returns:
Tuple of the OpenAI functions JSON schema and a default function for executing
a request based on the OpenAI function schema.
"""
try:
from langchain_community.tools import APIOperation
except ImportError:
raise ImportError(
"Could not import langchain_community.tools. "
"Please install it with `pip install langchain-community`."
)
if not spec.paths:
return [], lambda: None
functions = []
_name_to_call_map = {}
for path in spec.paths:
path_params = {
(p.name, p.param_in): p for p in spec.get_parameters_for_path(path)
}
for method in spec.get_methods_for_path(path):
request_args = {}
op = spec.get_operation(path, method)
op_params = path_params.copy()
for param in spec.get_parameters_for_operation(op):
op_params[(param.name, param.param_in)] = param
params_by_type = defaultdict(list)
for name_loc, p in op_params.items():
params_by_type[name_loc[1]].append(p)
param_loc_to_arg_name = {
"query": "params",
"header": "headers",
"cookie": "cookies",
"path": "path_params",
}
for param_loc, arg_name in param_loc_to_arg_name.items():
if params_by_type[param_loc]:
request_args[arg_name] = _openapi_params_to_json_schema(
params_by_type[param_loc], spec
)
request_body = spec.get_request_body_for_operation(op)
# TODO: Support more MIME types.
if request_body and request_body.content:
media_types = {}
for media_type, media_type_object in request_body.content.items():
if media_type_object.media_type_schema:
schema = spec.get_schema(media_type_object.media_type_schema)
media_types[media_type] = json.loads(
schema.json(exclude_none=True)
)
if len(media_types) == 1:
media_type, schema_dict = list(media_types.items())[0]
key = "json" if media_type == "application/json" else "data"
request_args[key] = schema_dict
elif len(media_types) > 1:
request_args["data"] = {"anyOf": list(media_types.values())}
api_op = APIOperation.from_openapi_spec(spec, path, method)
fn = {
"name": api_op.operation_id,
"description": api_op.description,
"parameters": {
"type": "object",
"properties": request_args,
},
}
functions.append(fn)
_name_to_call_map[fn["name"]] = {
"method": method,
"url": api_op.base_url + api_op.path,
}
def default_call_api(
name: str,
fn_args: dict,
headers: Optional[dict] = None,
params: Optional[dict] = None,
**kwargs: Any,
) -> Any:
method = _name_to_call_map[name]["method"]
url = _name_to_call_map[name]["url"]
path_params = fn_args.pop("path_params", {})
url = _format_url(url, path_params)
if "data" in fn_args and isinstance(fn_args["data"], dict):
fn_args["data"] = json.dumps(fn_args["data"])
_kwargs = {**fn_args, **kwargs}
if headers is not None:
if "headers" in _kwargs:
_kwargs["headers"].update(headers)
else:
_kwargs["headers"] = headers
if params is not None:
if "params" in _kwargs:
_kwargs["params"].update(params)
else:
_kwargs["params"] = params
return requests.request(method, url, **_kwargs)
return functions, default_call_api
[docs]
class SimpleRequestChain(Chain):
"""Chain for making a simple request to an API endpoint."""
request_method: Callable
"""Method to use for making the request."""
output_key: str = "response"
"""Key to use for the output of the request."""
input_key: str = "function"
"""Key to use for the input of the request."""
@property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run the logic of this chain and return the output."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
name = inputs[self.input_key].pop("name")
args = inputs[self.input_key].pop("arguments")
_pretty_name = get_colored_text(name, "green")
_pretty_args = get_colored_text(json.dumps(args, indent=2), "green")
_text = f"Calling endpoint {_pretty_name} with arguments:\n" + _pretty_args
_run_manager.on_text(_text)
api_response: Response = self.request_method(name, args)
if api_response.status_code != 200:
response = (
f"{api_response.status_code}: {api_response.reason}"
+ f"\nFor {name} "
+ f"Called with args: {args.get('params','')}"
)
else:
try:
response = api_response.json()
except Exception:
response = api_response.text
return {self.output_key: response}
[docs]
@deprecated(
since="0.2.13",
message=(
"This function is deprecated and will be removed in langchain 1.0. "
"See API reference for replacement: "
"https://api.python.langchain.com/en/latest/chains/langchain.chains.openai_functions.openapi.get_openapi_chain.html" # noqa: E501
),
removal="1.0",
)
def get_openapi_chain(
spec: Union[OpenAPISpec, str],
llm: Optional[BaseLanguageModel] = None,
prompt: Optional[BasePromptTemplate] = None,
request_chain: Optional[Chain] = None,
llm_chain_kwargs: Optional[Dict] = None,
verbose: bool = False,
headers: Optional[Dict] = None,
params: Optional[Dict] = None,
**kwargs: Any,
) -> SequentialChain:
"""Create a chain for querying an API from a OpenAPI spec.
Note: this class is deprecated. See below for a replacement implementation.
The benefits of this implementation are:
- Uses LLM tool calling features to encourage properly-formatted API requests;
- Includes async support.
.. code-block:: python
from typing import Any
from langchain.chains.openai_functions.openapi import openapi_spec_to_openai_fn
from langchain_community.utilities.openapi import OpenAPISpec
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# Define API spec. Can be JSON or YAML
api_spec = \"\"\"
{
"openapi": "3.1.0",
"info": {
"title": "JSONPlaceholder API",
"version": "1.0.0"
},
"servers": [
{
"url": "https://jsonplaceholder.typicode.com"
}
],
"paths": {
"/posts": {
"get": {
"summary": "Get posts",
"parameters": [
{
"name": "_limit",
"in": "query",
"required": false,
"schema": {
"type": "integer",
"example": 2
},
"description": "Limit the number of results"
}
]
}
}
}
}
\"\"\"
parsed_spec = OpenAPISpec.from_text(api_spec)
openai_fns, call_api_fn = openapi_spec_to_openai_fn(parsed_spec)
tools = [
{"type": "function", "function": fn}
for fn in openai_fns
]
prompt = ChatPromptTemplate.from_template(
"Use the provided APIs to respond to this user query:\\n\\n{query}"
)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0).bind_tools(tools)
def _execute_tool(message) -> Any:
if tool_calls := message.tool_calls:
tool_call = message.tool_calls[0]
response = call_api_fn(name=tool_call["name"], fn_args=tool_call["args"])
response.raise_for_status()
return response.json()
else:
return message.content
chain = prompt | llm | _execute_tool
.. code-block:: python
response = chain.invoke({"query": "Get me top two posts."})
Args:
spec: OpenAPISpec or url/file/text string corresponding to one.
llm: language model, should be an OpenAI function-calling model, e.g.
`ChatOpenAI(model="gpt-3.5-turbo-0613")`.
prompt: Main prompt template to use.
request_chain: Chain for taking the functions output and executing the request.
""" # noqa: E501
try:
from langchain_community.utilities.openapi import OpenAPISpec
except ImportError as e:
raise ImportError(
"Could not import langchain_community.utilities.openapi. "
"Please install it with `pip install langchain-community`."
) from e
if isinstance(spec, str):
for conversion in (
OpenAPISpec.from_url,
OpenAPISpec.from_file,
OpenAPISpec.from_text,
):
try:
spec = conversion(spec) # type: ignore[arg-type]
break
except ImportError as e:
raise e
except Exception:
pass
if isinstance(spec, str):
raise ValueError(f"Unable to parse spec from source {spec}")
openai_fns, call_api_fn = openapi_spec_to_openai_fn(spec)
if not llm:
raise ValueError(
"Must provide an LLM for this chain.For example,\n"
"from langchain_openai import ChatOpenAI\n"
"llm = ChatOpenAI()\n"
)
prompt = prompt or ChatPromptTemplate.from_template(
"Use the provided API's to respond to this user query:\n\n{query}"
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
llm_kwargs={"functions": openai_fns},
output_parser=JsonOutputFunctionsParser(args_only=False),
output_key="function",
verbose=verbose,
**(llm_chain_kwargs or {}),
)
request_chain = request_chain or SimpleRequestChain(
request_method=lambda name, args: call_api_fn(
name, args, headers=headers, params=params
),
verbose=verbose,
)
return SequentialChain(
chains=[llm_chain, request_chain],
input_variables=llm_chain.input_keys,
output_variables=["response"],
verbose=verbose,
**kwargs,
)