Source code for langchain.chains.retrieval
from __future__ import annotations
from typing import Any, Dict, Union
from langchain_core.retrievers import (
BaseRetriever,
RetrieverOutput,
)
from langchain_core.runnables import Runnable, RunnablePassthrough
[docs]
def create_retrieval_chain(
retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]],
combine_docs_chain: Runnable[Dict[str, Any], str],
) -> Runnable:
"""Create retrieval chain that retrieves documents and then passes them on.
Args:
retriever: Retriever-like object that returns list of documents. Should
either be a subclass of BaseRetriever or a Runnable that returns
a list of documents. If a subclass of BaseRetriever, then it
is expected that an `input` key be passed in - this is what
is will be used to pass into the retriever. If this is NOT a
subclass of BaseRetriever, then all the inputs will be passed
into this runnable, meaning that runnable should take a dictionary
as input.
combine_docs_chain: Runnable that takes inputs and produces a string output.
The inputs to this will be any original inputs to this chain, a new
context key with the retrieved documents, and chat_history (if not present
in the inputs) with a value of `[]` (to easily enable conversational
retrieval.
Returns:
An LCEL Runnable. The Runnable return is a dictionary containing at the very
least a `context` and `answer` key.
Example:
.. code-block:: python
# pip install -U langchain langchain-community
from langchain_community.chat_models import ChatOpenAI
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain import hub
retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
llm = ChatOpenAI()
retriever = ...
combine_docs_chain = create_stuff_documents_chain(
llm, retrieval_qa_chat_prompt
)
retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)
chain.invoke({"input": "..."})
"""
if not isinstance(retriever, BaseRetriever):
retrieval_docs: Runnable[dict, RetrieverOutput] = retriever
else:
retrieval_docs = (lambda x: x["input"]) | retriever
retrieval_chain = (
RunnablePassthrough.assign(
context=retrieval_docs.with_config(run_name="retrieve_documents"),
).assign(answer=combine_docs_chain)
).with_config(run_name="retrieval_chain")
return retrieval_chain