from __future__ import annotations
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type
from langchain_core.callbacks import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from pydantic import ConfigDict
from langchain.chains.router.base import RouterChain
[docs]
class EmbeddingRouterChain(RouterChain):
"""Chain that uses embeddings to route between options."""
vectorstore: VectorStore
routing_keys: List[str] = ["query"]
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra="forbid",
)
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the LLM chain prompt expects.
:meta private:
"""
return self.routing_keys
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_input = ", ".join([inputs[k] for k in self.routing_keys])
results = self.vectorstore.similarity_search(_input, k=1)
return {"next_inputs": inputs, "destination": results[0].metadata["name"]}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
_input = ", ".join([inputs[k] for k in self.routing_keys])
results = await self.vectorstore.asimilarity_search(_input, k=1)
return {"next_inputs": inputs, "destination": results[0].metadata["name"]}
[docs]
@classmethod
def from_names_and_descriptions(
cls,
names_and_descriptions: Sequence[Tuple[str, Sequence[str]]],
vectorstore_cls: Type[VectorStore],
embeddings: Embeddings,
**kwargs: Any,
) -> EmbeddingRouterChain:
"""Convenience constructor."""
documents = []
for name, descriptions in names_and_descriptions:
for description in descriptions:
documents.append(
Document(page_content=description, metadata={"name": name})
)
vectorstore = vectorstore_cls.from_documents(documents, embeddings)
return cls(vectorstore=vectorstore, **kwargs)
[docs]
@classmethod
async def afrom_names_and_descriptions(
cls,
names_and_descriptions: Sequence[Tuple[str, Sequence[str]]],
vectorstore_cls: Type[VectorStore],
embeddings: Embeddings,
**kwargs: Any,
) -> EmbeddingRouterChain:
"""Convenience constructor."""
documents = []
for name, descriptions in names_and_descriptions:
for description in descriptions:
documents.append(
Document(page_content=description, metadata={"name": name})
)
vectorstore = await vectorstore_cls.afrom_documents(documents, embeddings)
return cls(vectorstore=vectorstore, **kwargs)