Source code for langchain.chains.router.multi_prompt

"""Use a single chain to route an input to one of multiple llm chains."""

from __future__ import annotations

from typing import Any, Dict, List, Optional

from langchain_core._api import deprecated
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate

from langchain.chains import ConversationChain
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.router.base import MultiRouteChain
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE


[docs] @deprecated( since="0.2.12", removal="1.0", message=( "Please see migration guide here for recommended implementation: " "https://python.langchain.com/docs/versions/migrating_chains/multi_prompt_chain/" # noqa: E501 ), ) class MultiPromptChain(MultiRouteChain): """A multi-route chain that uses an LLM router chain to choose amongst prompts. This class is deprecated. See below for a replacement, which offers several benefits, including streaming and batch support. Below is an example implementation: .. code-block:: python from operator import itemgetter from typing import Literal from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableConfig from langchain_openai import ChatOpenAI from langgraph.graph import END, START, StateGraph from typing_extensions import TypedDict llm = ChatOpenAI(model="gpt-4o-mini") # Define the prompts we will route to prompt_1 = ChatPromptTemplate.from_messages( [ ("system", "You are an expert on animals."), ("human", "{input}"), ] ) prompt_2 = ChatPromptTemplate.from_messages( [ ("system", "You are an expert on vegetables."), ("human", "{input}"), ] ) # Construct the chains we will route to. These format the input query # into the respective prompt, run it through a chat model, and cast # the result to a string. chain_1 = prompt_1 | llm | StrOutputParser() chain_2 = prompt_2 | llm | StrOutputParser() # Next: define the chain that selects which branch to route to. # Here we will take advantage of tool-calling features to force # the output to select one of two desired branches. route_system = "Route the user's query to either the animal or vegetable expert." route_prompt = ChatPromptTemplate.from_messages( [ ("system", route_system), ("human", "{input}"), ] ) # Define schema for output: class RouteQuery(TypedDict): \"\"\"Route query to destination expert.\"\"\" destination: Literal["animal", "vegetable"] route_chain = route_prompt | llm.with_structured_output(RouteQuery) # For LangGraph, we will define the state of the graph to hold the query, # destination, and final answer. class State(TypedDict): query: str destination: RouteQuery answer: str # We define functions for each node, including routing the query: async def route_query(state: State, config: RunnableConfig): destination = await route_chain.ainvoke(state["query"], config) return {"destination": destination} # And one node for each prompt async def prompt_1(state: State, config: RunnableConfig): return {"answer": await chain_1.ainvoke(state["query"], config)} async def prompt_2(state: State, config: RunnableConfig): return {"answer": await chain_2.ainvoke(state["query"], config)} # We then define logic that selects the prompt based on the classification def select_node(state: State) -> Literal["prompt_1", "prompt_2"]: if state["destination"] == "animal": return "prompt_1" else: return "prompt_2" # Finally, assemble the multi-prompt chain. This is a sequence of two steps: # 1) Select "animal" or "vegetable" via the route_chain, and collect the answer # alongside the input query. # 2) Route the input query to chain_1 or chain_2, based on the # selection. graph = StateGraph(State) graph.add_node("route_query", route_query) graph.add_node("prompt_1", prompt_1) graph.add_node("prompt_2", prompt_2) graph.add_edge(START, "route_query") graph.add_conditional_edges("route_query", select_node) graph.add_edge("prompt_1", END) graph.add_edge("prompt_2", END) app = graph.compile() result = await app.ainvoke({"query": "what color are carrots"}) print(result["destination"]) print(result["answer"]) """ # noqa: E501 @property def output_keys(self) -> List[str]: return ["text"]
[docs] @classmethod def from_prompts( cls, llm: BaseLanguageModel, prompt_infos: List[Dict[str, str]], default_chain: Optional[Chain] = None, **kwargs: Any, ) -> MultiPromptChain: """Convenience constructor for instantiating from destination prompts.""" destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos] destinations_str = "\n".join(destinations) router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format( destinations=destinations_str ) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) destination_chains = {} for p_info in prompt_infos: name = p_info["name"] prompt_template = p_info["prompt_template"] prompt = PromptTemplate(template=prompt_template, input_variables=["input"]) chain = LLMChain(llm=llm, prompt=prompt) destination_chains[name] = chain _default_chain = default_chain or ConversationChain(llm=llm, output_key="text") return cls( router_chain=router_chain, destination_chains=destination_chains, default_chain=_default_chain, **kwargs, )