Source code for langchain.evaluation.embedding_distance.base

"""A chain for comparing the output of two models using embeddings."""

import functools
import logging
from enum import Enum
from importlib import util
from typing import Any, Dict, List, Optional

from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain_core.embeddings import Embeddings
from langchain_core.utils import pre_init
from pydantic import ConfigDict, Field

from langchain.chains.base import Chain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
from langchain.schema import RUN_KEY


def _import_numpy() -> Any:
    try:
        import numpy as np

        return np
    except ImportError as e:
        raise ImportError(
            "Could not import numpy, please install with `pip install numpy`."
        ) from e


logger = logging.getLogger(__name__)


@functools.lru_cache(maxsize=1)
def _check_numpy() -> bool:
    if bool(util.find_spec("numpy")):
        return True
    logger.warning(
        "NumPy not found in the current Python environment. "
        "langchain will use a pure Python implementation for embedding distance "
        "operations, which may significantly impact performance, especially for large "
        "datasets. For optimal speed and efficiency, consider installing NumPy: "
        "pip install numpy"
    )
    return False


def _embedding_factory() -> Embeddings:
    """Create an Embeddings object.
    Returns:
        Embeddings: The created Embeddings object.
    """
    # Here for backwards compatibility.
    # Generally, we do not want to be seeing imports from langchain community
    # or partner packages in langchain.
    try:
        from langchain_openai import OpenAIEmbeddings
    except ImportError:
        try:
            from langchain_community.embeddings.openai import (  # type: ignore[no-redef]
                OpenAIEmbeddings,
            )
        except ImportError:
            raise ImportError(
                "Could not import OpenAIEmbeddings. Please install the "
                "OpenAIEmbeddings package using `pip install langchain-openai`."
            )
    return OpenAIEmbeddings()


[docs] class EmbeddingDistance(str, Enum): """Embedding Distance Metric. Attributes: COSINE: Cosine distance metric. EUCLIDEAN: Euclidean distance metric. MANHATTAN: Manhattan distance metric. CHEBYSHEV: Chebyshev distance metric. HAMMING: Hamming distance metric. """ COSINE = "cosine" EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" CHEBYSHEV = "chebyshev" HAMMING = "hamming"
class _EmbeddingDistanceChainMixin(Chain): """Shared functionality for embedding distance evaluators. Attributes: embeddings (Embeddings): The embedding objects to vectorize the outputs. distance_metric (EmbeddingDistance): The distance metric to use for comparing the embeddings. """ embeddings: Embeddings = Field(default_factory=_embedding_factory) distance_metric: EmbeddingDistance = Field(default=EmbeddingDistance.COSINE) @pre_init def _validate_tiktoken_installed(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Validate that the TikTok library is installed. Args: values (Dict[str, Any]): The values to validate. Returns: Dict[str, Any]: The validated values. """ embeddings = values.get("embeddings") types_ = [] try: from langchain_openai import OpenAIEmbeddings types_.append(OpenAIEmbeddings) except ImportError: pass try: from langchain_community.embeddings.openai import ( # type: ignore[no-redef] OpenAIEmbeddings, ) types_.append(OpenAIEmbeddings) except ImportError: pass if not types_: raise ImportError( "Could not import OpenAIEmbeddings. Please install the " "OpenAIEmbeddings package using `pip install langchain-openai`." ) if isinstance(embeddings, tuple(types_)): try: import tiktoken # noqa: F401 except ImportError: raise ImportError( "The tiktoken library is required to use the default " "OpenAI embeddings with embedding distance evaluators." " Please either manually select a different Embeddings object" " or install tiktoken using `pip install tiktoken`." ) return values model_config = ConfigDict( arbitrary_types_allowed=True, ) @property def output_keys(self) -> List[str]: """Return the output keys of the chain. Returns: List[str]: The output keys. """ return ["score"] def _prepare_output(self, result: dict) -> dict: parsed = {"score": result["score"]} if RUN_KEY in result: parsed[RUN_KEY] = result[RUN_KEY] return parsed def _get_metric(self, metric: EmbeddingDistance) -> Any: """Get the metric function for the given metric name. Args: metric (EmbeddingDistance): The metric name. Returns: Any: The metric function. """ metrics = { EmbeddingDistance.COSINE: self._cosine_distance, EmbeddingDistance.EUCLIDEAN: self._euclidean_distance, EmbeddingDistance.MANHATTAN: self._manhattan_distance, EmbeddingDistance.CHEBYSHEV: self._chebyshev_distance, EmbeddingDistance.HAMMING: self._hamming_distance, } if metric in metrics: return metrics[metric] else: raise ValueError(f"Invalid metric: {metric}") @staticmethod def _cosine_distance(a: Any, b: Any) -> Any: """Compute the cosine distance between two vectors. Args: a (np.ndarray): The first vector. b (np.ndarray): The second vector. Returns: np.ndarray: The cosine distance. """ try: from langchain_community.utils.math import cosine_similarity except ImportError: raise ImportError( "The cosine_similarity function is required to compute cosine distance." " Please install the langchain-community package using" " `pip install langchain-community`." ) return 1.0 - cosine_similarity(a, b) @staticmethod def _euclidean_distance(a: Any, b: Any) -> Any: """Compute the Euclidean distance between two vectors. Args: a (np.ndarray): The first vector. b (np.ndarray): The second vector. Returns: np.floating: The Euclidean distance. """ if _check_numpy(): import numpy as np return np.linalg.norm(a - b) return sum((x - y) * (x - y) for x, y in zip(a, b)) ** 0.5 @staticmethod def _manhattan_distance(a: Any, b: Any) -> Any: """Compute the Manhattan distance between two vectors. Args: a (np.ndarray): The first vector. b (np.ndarray): The second vector. Returns: np.floating: The Manhattan distance. """ if _check_numpy(): np = _import_numpy() return np.sum(np.abs(a - b)) return sum(abs(x - y) for x, y in zip(a, b)) @staticmethod def _chebyshev_distance(a: Any, b: Any) -> Any: """Compute the Chebyshev distance between two vectors. Args: a (np.ndarray): The first vector. b (np.ndarray): The second vector. Returns: np.floating: The Chebyshev distance. """ if _check_numpy(): np = _import_numpy() return np.max(np.abs(a - b)) return max(abs(x - y) for x, y in zip(a, b)) @staticmethod def _hamming_distance(a: Any, b: Any) -> Any: """Compute the Hamming distance between two vectors. Args: a (np.ndarray): The first vector. b (np.ndarray): The second vector. Returns: np.floating: The Hamming distance. """ if _check_numpy(): np = _import_numpy() return np.mean(a != b) return sum(1 for x, y in zip(a, b) if x != y) / len(a) def _compute_score(self, vectors: Any) -> float: """Compute the score based on the distance metric. Args: vectors (np.ndarray): The input vectors. Returns: float: The computed score. """ metric = self._get_metric(self.distance_metric) if _check_numpy() and isinstance(vectors, _import_numpy().ndarray): score = metric(vectors[0].reshape(1, -1), vectors[1].reshape(1, -1)).item() else: score = metric(vectors[0], vectors[1]) return float(score)
[docs] class EmbeddingDistanceEvalChain(_EmbeddingDistanceChainMixin, StringEvaluator): """Use embedding distances to score semantic difference between a prediction and reference. Examples: >>> chain = EmbeddingDistanceEvalChain() >>> result = chain.evaluate_strings(prediction="Hello", reference="Hi") >>> print(result) {'score': 0.5} """ @property def requires_reference(self) -> bool: """Return whether the chain requires a reference. Returns: bool: True if a reference is required, False otherwise. """ return True @property def evaluation_name(self) -> str: return f"embedding_{self.distance_metric.value}_distance" @property def input_keys(self) -> List[str]: """Return the input keys of the chain. Returns: List[str]: The input keys. """ return ["prediction", "reference"] def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Compute the score for a prediction and reference. Args: inputs (Dict[str, Any]): The input data. run_manager (Optional[CallbackManagerForChainRun], optional): The callback manager. Returns: Dict[str, Any]: The computed score. """ vectors = self.embeddings.embed_documents( [inputs["prediction"], inputs["reference"]] ) if _check_numpy(): np = _import_numpy() vectors = np.array(vectors) score = self._compute_score(vectors) return {"score": score} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Asynchronously compute the score for a prediction and reference. Args: inputs (Dict[str, Any]): The input data. run_manager (AsyncCallbackManagerForChainRun, optional): The callback manager. Returns: Dict[str, Any]: The computed score. """ vectors = await self.embeddings.aembed_documents( [ inputs["prediction"], inputs["reference"], ] ) if _check_numpy(): np = _import_numpy() vectors = np.array(vectors) score = self._compute_score(vectors) return {"score": score} def _evaluate_strings( self, *, prediction: str, reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate the embedding distance between a prediction and reference. Args: prediction (str): The output string from the first model. reference (str): The reference string (required) callbacks (Callbacks, optional): The callbacks to use. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - score: The embedding distance between the two predictions. """ result = self( inputs={"prediction": prediction, "reference": reference}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_strings( self, *, prediction: str, reference: Optional[str] = None, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate the embedding distance between a prediction and reference. Args: prediction (str): The output string from the first model. reference (str): The output string from the second model. callbacks (Callbacks, optional): The callbacks to use. **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - score: The embedding distance between the two predictions. """ result = await self.acall( inputs={"prediction": prediction, "reference": reference}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result)
[docs] class PairwiseEmbeddingDistanceEvalChain( _EmbeddingDistanceChainMixin, PairwiseStringEvaluator ): """Use embedding distances to score semantic difference between two predictions. Examples: >>> chain = PairwiseEmbeddingDistanceEvalChain() >>> result = chain.evaluate_string_pairs(prediction="Hello", prediction_b="Hi") >>> print(result) {'score': 0.5} """ @property def input_keys(self) -> List[str]: """Return the input keys of the chain. Returns: List[str]: The input keys. """ return ["prediction", "prediction_b"] @property def evaluation_name(self) -> str: return f"pairwise_embedding_{self.distance_metric.value}_distance" def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Compute the score for two predictions. Args: inputs (Dict[str, Any]): The input data. run_manager (CallbackManagerForChainRun, optional): The callback manager. Returns: Dict[str, Any]: The computed score. """ vectors = self.embeddings.embed_documents( [ inputs["prediction"], inputs["prediction_b"], ] ) if _check_numpy(): np = _import_numpy() vectors = np.array(vectors) score = self._compute_score(vectors) return {"score": score} async def _acall( self, inputs: Dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Asynchronously compute the score for two predictions. Args: inputs (Dict[str, Any]): The input data. run_manager (AsyncCallbackManagerForChainRun, optional): The callback manager. Returns: Dict[str, Any]: The computed score. """ vectors = await self.embeddings.aembed_documents( [ inputs["prediction"], inputs["prediction_b"], ] ) if _check_numpy(): np = _import_numpy() vectors = np.array(vectors) score = self._compute_score(vectors) return {"score": score} def _evaluate_string_pairs( self, *, prediction: str, prediction_b: str, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Evaluate the embedding distance between two predictions. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. callbacks (Callbacks, optional): The callbacks to use. tags (List[str], optional): Tags to apply to traces metadata (Dict[str, Any], optional): metadata to apply to **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - score: The embedding distance between the two predictions. """ result = self( inputs={"prediction": prediction, "prediction_b": prediction_b}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result) async def _aevaluate_string_pairs( self, *, prediction: str, prediction_b: str, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False, **kwargs: Any, ) -> dict: """Asynchronously evaluate the embedding distance between two predictions. Args: prediction (str): The output string from the first model. prediction_b (str): The output string from the second model. callbacks (Callbacks, optional): The callbacks to use. tags (List[str], optional): Tags to apply to traces metadata (Dict[str, Any], optional): metadata to apply to traces **kwargs (Any): Additional keyword arguments. Returns: dict: A dictionary containing: - score: The embedding distance between the two predictions. """ result = await self.acall( inputs={"prediction": prediction, "prediction_b": prediction_b}, callbacks=callbacks, tags=tags, metadata=metadata, include_run_info=include_run_info, ) return self._prepare_output(result)