Source code for langchain.memory.chat_memory
import warnings
from abc import ABC
from typing import Any, Dict, Optional, Tuple
from langchain_core._api import deprecated
from langchain_core.chat_history import (
BaseChatMessageHistory,
InMemoryChatMessageHistory,
)
from langchain_core.memory import BaseMemory
from langchain_core.messages import AIMessage, HumanMessage
from pydantic import Field
from langchain.memory.utils import get_prompt_input_key
[docs]
@deprecated(
since="0.3.1",
removal="1.0.0",
message=(
"Please see the migration guide at: "
"https://python.langchain.com/docs/versions/migrating_memory/"
),
)
class BaseChatMemory(BaseMemory, ABC):
"""Abstract base class for chat memory.
**ATTENTION** This abstraction was created prior to when chat models had
native tool calling capabilities.
It does **NOT** support native tool calling capabilities for chat models and
will fail SILENTLY if used with a chat model that has native tool calling.
DO NOT USE THIS ABSTRACTION FOR NEW CODE.
"""
chat_memory: BaseChatMessageHistory = Field(
default_factory=InMemoryChatMessageHistory
)
output_key: Optional[str] = None
input_key: Optional[str] = None
return_messages: bool = False
def _get_input_output(
self, inputs: Dict[str, Any], outputs: Dict[str, str]
) -> Tuple[str, str]:
if self.input_key is None:
prompt_input_key = get_prompt_input_key(inputs, self.memory_variables)
else:
prompt_input_key = self.input_key
if self.output_key is None:
if len(outputs) == 1:
output_key = list(outputs.keys())[0]
elif "output" in outputs:
output_key = "output"
warnings.warn(
f"'{self.__class__.__name__}' got multiple output keys:"
f" {outputs.keys()}. The default 'output' key is being used."
f" If this is not desired, please manually set 'output_key'."
)
else:
raise ValueError(
f"Got multiple output keys: {outputs.keys()}, cannot "
f"determine which to store in memory. Please set the "
f"'output_key' explicitly."
)
else:
output_key = self.output_key
return inputs[prompt_input_key], outputs[output_key]
[docs]
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
input_str, output_str = self._get_input_output(inputs, outputs)
self.chat_memory.add_messages(
[HumanMessage(content=input_str), AIMessage(content=output_str)]
)
[docs]
async def asave_context(
self, inputs: Dict[str, Any], outputs: Dict[str, str]
) -> None:
"""Save context from this conversation to buffer."""
input_str, output_str = self._get_input_output(inputs, outputs)
await self.chat_memory.aadd_messages(
[HumanMessage(content=input_str), AIMessage(content=output_str)]
)
[docs]
def clear(self) -> None:
"""Clear memory contents."""
self.chat_memory.clear()
[docs]
async def aclear(self) -> None:
"""Clear memory contents."""
await self.chat_memory.aclear()