Source code for langchain.retrievers.re_phraser
import logging
from typing import List
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.language_models import BaseLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.retrievers import BaseRetriever
from langchain_core.runnables import Runnable
logger = logging.getLogger(__name__)
# Default template
DEFAULT_TEMPLATE = """You are an assistant tasked with taking a natural language \
query from a user and converting it into a query for a vectorstore. \
In this process, you strip out information that is not relevant for \
the retrieval task. Here is the user query: {question}"""
# Default prompt
DEFAULT_QUERY_PROMPT = PromptTemplate.from_template(DEFAULT_TEMPLATE)
[docs]
class RePhraseQueryRetriever(BaseRetriever):
"""Given a query, use an LLM to re-phrase it.
Then, retrieve docs for the re-phrased query."""
retriever: BaseRetriever
llm_chain: Runnable
[docs]
@classmethod
def from_llm(
cls,
retriever: BaseRetriever,
llm: BaseLLM,
prompt: BasePromptTemplate = DEFAULT_QUERY_PROMPT,
) -> "RePhraseQueryRetriever":
"""Initialize from llm using default template.
The prompt used here expects a single input: `question`
Args:
retriever: retriever to query documents from
llm: llm for query generation using DEFAULT_QUERY_PROMPT
prompt: prompt template for query generation
Returns:
RePhraseQueryRetriever
"""
llm_chain = prompt | llm | StrOutputParser()
return cls(
retriever=retriever,
llm_chain=llm_chain,
)
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
) -> List[Document]:
"""Get relevant documents given a user question.
Args:
query: user question
Returns:
Relevant documents for re-phrased question
"""
re_phrased_question = self.llm_chain.invoke(
query, {"callbacks": run_manager.get_child()}
)
logger.info(f"Re-phrased question: {re_phrased_question}")
docs = self.retriever.invoke(
re_phrased_question, config={"callbacks": run_manager.get_child()}
)
return docs
async def _aget_relevant_documents(
self,
query: str,
*,
run_manager: AsyncCallbackManagerForRetrieverRun,
) -> List[Document]:
raise NotImplementedError