Source code for langchain.smith.evaluation.runner_utils

"""Utilities for running language models or Chains over datasets."""

from __future__ import annotations

import concurrent.futures
import dataclasses
import functools
import inspect
import logging
import uuid
from datetime import datetime, timezone
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Tuple,
    Union,
    cast,
)

from langchain_core._api import warn_deprecated
from langchain_core.callbacks.manager import Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import BaseMessage, messages_from_dict
from langchain_core.outputs import ChatResult, LLMResult
from langchain_core.runnables import Runnable, RunnableConfig, RunnableLambda
from langchain_core.runnables import config as runnable_config
from langchain_core.runnables import utils as runnable_utils
from langchain_core.tracers.evaluation import (
    EvaluatorCallbackHandler,
    wait_for_all_evaluators,
)
from langchain_core.tracers.langchain import LangChainTracer
from langsmith.client import Client
from langsmith.env import get_git_info, get_langchain_env_var_metadata
from langsmith.evaluation import (
    EvaluationResult,
    RunEvaluator,
)
from langsmith.evaluation import (
    run_evaluator as run_evaluator_dec,
)
from langsmith.run_helpers import as_runnable, is_traceable_function
from langsmith.schemas import Dataset, DataType, Example, Run, TracerSession
from langsmith.utils import LangSmithError
from requests import HTTPError
from typing_extensions import TypedDict

from langchain.chains.base import Chain
from langchain.evaluation.loading import load_evaluator
from langchain.evaluation.schema import (
    EvaluatorType,
    PairwiseStringEvaluator,
    StringEvaluator,
)
from langchain.smith import evaluation as smith_eval
from langchain.smith.evaluation import config as smith_eval_config
from langchain.smith.evaluation import name_generation, progress

if TYPE_CHECKING:
    import pandas as pd

logger = logging.getLogger(__name__)

MODEL_OR_CHAIN_FACTORY = Union[
    Callable[[], Union[Chain, Runnable]],
    BaseLanguageModel,
    Callable[[dict], Any],
    Runnable,
    Chain,
]
MCF = Union[Callable[[], Union[Chain, Runnable]], BaseLanguageModel]


[docs] class InputFormatError(Exception): """Raised when the input format is invalid."""
## Shared Utilities
[docs] class TestResult(dict): """A dictionary of the results of a single test run."""
[docs] def get_aggregate_feedback( self, ) -> pd.DataFrame: """Return quantiles for the feedback scores. This method calculates and prints the quantiles for the feedback scores across all feedback keys. Returns: A DataFrame containing the quantiles for each feedback key. """ df = self.to_dataframe() # Drop all things starting with inputs., outputs., and reference to_drop = [ col for col in df.columns if col.startswith("inputs.") or col.startswith("outputs.") or col in {"input", "output"} or col.startswith("reference") ] return df.describe(include="all").drop(to_drop, axis=1)
[docs] def to_dataframe(self) -> pd.DataFrame: """Convert the results to a dataframe.""" try: import pandas as pd except ImportError as e: raise ImportError( "Pandas is required to convert the results to a dataframe." " to install pandas, run `pip install pandas`." ) from e indices = [] records = [] for example_id, result in self["results"].items(): feedback = result["feedback"] output_ = result.get("output") if isinstance(output_, dict): output = {f"outputs.{k}": v for k, v in output_.items()} elif output_ is None: output = {} else: output = {"output": output_} r = { **{f"inputs.{k}": v for k, v in result["input"].items()}, **output, } if "reference" in result: if isinstance(result["reference"], dict): r.update( {f"reference.{k}": v for k, v in result["reference"].items()} ) else: r["reference"] = result["reference"] r.update( { **{f"feedback.{f.key}": f.score for f in feedback}, "error": result.get("Error"), "execution_time": result["execution_time"], "run_id": result.get("run_id"), } ) records.append(r) indices.append(example_id) return pd.DataFrame(records, index=indices)
[docs] class EvalError(dict): """Your architecture raised an error."""
[docs] def __init__(self, Error: BaseException, **kwargs: Any) -> None: super().__init__(Error=Error, **kwargs)
def __getattr__(self, name: str) -> Any: try: return self[name] except KeyError: raise AttributeError(f"'EvalError' object has no attribute '{name}'")
def _wrap_in_chain_factory( llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY, dataset_name: str = "<my_dataset>", ) -> MCF: """Forgive the user if they pass in a chain without memory instead of a chain factory. It's a common mistake. Raise a more helpful error message as well.""" if isinstance(llm_or_chain_factory, Chain): chain = llm_or_chain_factory chain_class = chain.__class__.__name__ if llm_or_chain_factory.memory is not None: memory_class = chain.memory.__class__.__name__ raise ValueError( "Cannot directly evaluate a chain with stateful memory." " To evaluate this chain, pass in a chain constructor" " that initializes fresh memory each time it is called." " This will safegaurd against information" " leakage between dataset examples." "\nFor example:\n\n" "def chain_constructor():\n" f" new_memory = {memory_class}(...)\n" f" return {chain_class}" "(memory=new_memory, ...)\n\n" f'run_on_dataset("{dataset_name}", chain_constructor, ...)' ) return lambda: chain elif isinstance(llm_or_chain_factory, BaseLanguageModel): return llm_or_chain_factory elif isinstance(llm_or_chain_factory, Runnable): # Memory may exist here, but it's not elegant to check all those cases. lcf = llm_or_chain_factory return lambda: lcf elif callable(llm_or_chain_factory): if is_traceable_function(llm_or_chain_factory): runnable_ = as_runnable(cast(Callable, llm_or_chain_factory)) return lambda: runnable_ try: _model = llm_or_chain_factory() # type: ignore[call-arg] except TypeError: # It's an arbitrary function, wrap it in a RunnableLambda user_func = cast(Callable, llm_or_chain_factory) sig = inspect.signature(user_func) logger.info(f"Wrapping function {sig} as RunnableLambda.") wrapped = RunnableLambda(user_func) return lambda: wrapped constructor = cast(Callable, llm_or_chain_factory) if isinstance(_model, BaseLanguageModel): # It's not uncommon to do an LLM constructor instead of raw LLM, # so we'll unpack it for the user. return _model elif is_traceable_function(cast(Callable, _model)): runnable_ = as_runnable(cast(Callable, _model)) return lambda: runnable_ elif not isinstance(_model, Runnable): # This is unlikely to happen - a constructor for a model function return lambda: RunnableLambda(constructor) else: # Typical correct case return constructor return llm_or_chain_factory def _get_prompt(inputs: Dict[str, Any]) -> str: """Get prompt from inputs. Args: inputs: The input dictionary. Returns: A string prompt. Raises: InputFormatError: If the input format is invalid. """ if not inputs: raise InputFormatError("Inputs should not be empty.") prompts = [] if "prompt" in inputs: if not isinstance(inputs["prompt"], str): raise InputFormatError( "Expected string for 'prompt', got" f" {type(inputs['prompt']).__name__}" ) prompts = [inputs["prompt"]] elif "prompts" in inputs: if not isinstance(inputs["prompts"], list) or not all( isinstance(i, str) for i in inputs["prompts"] ): raise InputFormatError( "Expected list of strings for 'prompts'," f" got {type(inputs['prompts']).__name__}" ) prompts = inputs["prompts"] elif len(inputs) == 1: prompt_ = next(iter(inputs.values())) if isinstance(prompt_, str): prompts = [prompt_] elif isinstance(prompt_, list) and all(isinstance(i, str) for i in prompt_): prompts = prompt_ else: raise InputFormatError(f"LLM Run expects string prompt input. Got {inputs}") else: raise InputFormatError( f"LLM Run expects 'prompt' or 'prompts' in inputs. Got {inputs}" ) if len(prompts) == 1: return prompts[0] else: raise InputFormatError( f"LLM Run expects single prompt input. Got {len(prompts)} prompts." )
[docs] class ChatModelInput(TypedDict): """Input for a chat model. Parameters: messages: List of chat messages. """ messages: List[BaseMessage]
def _get_messages(inputs: Dict[str, Any]) -> dict: """Get Chat Messages from inputs. Args: inputs: The input dictionary. Returns: A list of chat messages. Raises: InputFormatError: If the input format is invalid. """ if not inputs: raise InputFormatError("Inputs should not be empty.") input_copy = inputs.copy() if "messages" in inputs: input_copy["input"] = input_copy.pop("messages") elif len(inputs) == 1: input_copy["input"] = next(iter(inputs.values())) if "input" in input_copy: raw_messages = input_copy["input"] if isinstance(raw_messages, list) and all( isinstance(i, dict) for i in raw_messages ): raw_messages = [raw_messages] if len(raw_messages) == 1: input_copy["input"] = messages_from_dict(raw_messages[0]) else: raise InputFormatError( "Batch messages not supported. Please provide a" " single list of messages." ) return input_copy else: raise InputFormatError( f"Chat Run expects single List[dict] or List[List[dict]] 'messages'" f" input. Got {inputs}" ) ## Shared data validation utilities def _validate_example_inputs_for_language_model( first_example: Example, input_mapper: Optional[Callable[[Dict], Any]], ) -> None: if input_mapper: prompt_input = input_mapper(first_example.inputs) if not isinstance(prompt_input, str) and not ( isinstance(prompt_input, list) and all(isinstance(msg, BaseMessage) for msg in prompt_input) ): raise InputFormatError( "When using an input_mapper to prepare dataset example inputs" " for an LLM or chat model, the output must a single string or" " a list of chat messages." f"\nGot: {prompt_input} of type {type(prompt_input)}." ) else: try: _get_prompt(first_example.inputs) except InputFormatError: try: _get_messages(first_example.inputs) except InputFormatError: raise InputFormatError( "Example inputs do not match language model input format. " "Expected a dictionary with messages or a single prompt." f" Got: {first_example.inputs}" " Please update your dataset OR provide an input_mapper" " to convert the example.inputs to a compatible format" " for the llm or chat model you wish to evaluate." ) def _validate_example_inputs_for_chain( first_example: Example, chain: Chain, input_mapper: Optional[Callable[[Dict], Any]], ) -> None: """Validate that the example inputs match the chain input keys.""" if input_mapper: first_inputs = input_mapper(first_example.inputs) missing_keys = set(chain.input_keys).difference(first_inputs) if not isinstance(first_inputs, dict): raise InputFormatError( "When using an input_mapper to prepare dataset example" " inputs for a chain, the mapped value must be a dictionary." f"\nGot: {first_inputs} of type {type(first_inputs)}." ) if missing_keys: raise InputFormatError( "Missing keys after loading example using input_mapper." f"\nExpected: {chain.input_keys}. Got: {first_inputs.keys()}" ) else: first_inputs = first_example.inputs missing_keys = set(chain.input_keys).difference(first_inputs) if len(first_inputs) == 1 and len(chain.input_keys) == 1: # We can pass this through the run method. # Refrain from calling to validate. pass elif missing_keys: raise InputFormatError( "Example inputs missing expected chain input keys." " Please provide an input_mapper to convert the example.inputs" " to a compatible format for the chain you wish to evaluate." f"Expected: {chain.input_keys}. " f"Got: {first_inputs.keys()}" ) def _validate_example_inputs( example: Example, llm_or_chain_factory: MCF, input_mapper: Optional[Callable[[Dict], Any]], ) -> None: """Validate that the example inputs are valid for the model.""" if isinstance(llm_or_chain_factory, BaseLanguageModel): _validate_example_inputs_for_language_model(example, input_mapper) else: chain = llm_or_chain_factory() if isinstance(chain, Chain): # Otherwise it's a runnable _validate_example_inputs_for_chain(example, chain, input_mapper) elif isinstance(chain, Runnable): logger.debug(f"Skipping input validation for {chain}") ## Shared Evaluator Setup Utilities def _setup_evaluation( llm_or_chain_factory: MCF, examples: List[Example], evaluation: Optional[smith_eval.RunEvalConfig], data_type: DataType, ) -> Optional[List[RunEvaluator]]: """Configure the evaluators to run on the results of the chain.""" if evaluation: if isinstance(llm_or_chain_factory, BaseLanguageModel): run_inputs, run_outputs = None, None run_type = "llm" else: run_type = "chain" chain = llm_or_chain_factory() run_inputs = chain.input_keys if isinstance(chain, Chain) else None run_outputs = chain.output_keys if isinstance(chain, Chain) else None run_evaluators = _load_run_evaluators( evaluation, run_type, data_type, list(examples[0].outputs) if examples[0].outputs else None, run_inputs, run_outputs, ) else: # TODO: Create a default helpfulness evaluator run_evaluators = None return run_evaluators def _determine_input_key( config: smith_eval.RunEvalConfig, run_inputs: Optional[List[str]], ) -> Optional[str]: input_key = None if config.input_key: input_key = config.input_key if run_inputs and input_key not in run_inputs: logger.warning( f"Input key {input_key} not in chain's specified" f" input keys {run_inputs}. Evaluation behavior may be undefined." ) elif run_inputs and len(run_inputs) == 1: input_key = run_inputs[0] elif run_inputs is not None and len(run_inputs) > 1: logger.warning( f"Chain expects multiple input keys: {run_inputs}," f" Evaluator is likely to fail. Evaluation behavior may be undefined." " Specify an input_key in the RunEvalConfig to avoid this warning." ) return input_key def _determine_prediction_key( config: smith_eval.RunEvalConfig, run_outputs: Optional[List[str]], ) -> Optional[str]: prediction_key = None if config.prediction_key: prediction_key = config.prediction_key if run_outputs and prediction_key not in run_outputs: logger.warning( f"Prediction key {prediction_key} not in chain's specified" f" output keys {run_outputs}. Evaluation behavior may be undefined." ) elif run_outputs and len(run_outputs) == 1: prediction_key = run_outputs[0] elif run_outputs is not None and len(run_outputs) > 1: logger.warning( f"Chain expects multiple output keys: {run_outputs}," f" Evaluation behavior may be undefined. Specify a prediction_key" " in the RunEvalConfig to avoid this warning." ) return prediction_key def _determine_reference_key( config: smith_eval.RunEvalConfig, example_outputs: Optional[List[str]], ) -> Optional[str]: if config.reference_key: reference_key = config.reference_key if example_outputs and reference_key not in example_outputs: raise ValueError( f"Reference key {reference_key} not in Dataset" f" example outputs: {example_outputs}" ) elif example_outputs and len(example_outputs) == 1: reference_key = list(example_outputs)[0] else: reference_key = None return reference_key def _construct_run_evaluator( eval_config: Union[ smith_eval_config.SINGLE_EVAL_CONFIG_TYPE, smith_eval_config.CUSTOM_EVALUATOR_TYPE, ], eval_llm: Optional[BaseLanguageModel], run_type: str, data_type: DataType, example_outputs: Optional[List[str]], reference_key: Optional[str], input_key: Optional[str], prediction_key: Optional[str], ) -> RunEvaluator: if isinstance(eval_config, RunEvaluator): return eval_config if isinstance(eval_config, (EvaluatorType, str)): if not isinstance(eval_config, EvaluatorType): eval_config = EvaluatorType(eval_config) evaluator_ = load_evaluator(eval_config, llm=eval_llm) eval_type_tag = eval_config.value elif isinstance(eval_config, smith_eval_config.EvalConfig): kwargs = {"llm": eval_llm, **eval_config.get_kwargs()} evaluator_ = load_evaluator(eval_config.evaluator_type, **kwargs) eval_type_tag = eval_config.evaluator_type.value # Override keys if specified in the config if isinstance(eval_config, smith_eval_config.SingleKeyEvalConfig): input_key = eval_config.input_key or input_key prediction_key = eval_config.prediction_key or prediction_key reference_key = eval_config.reference_key or reference_key elif callable(eval_config): # Assume we can decorate return run_evaluator_dec(eval_config) else: raise ValueError(f"Unknown evaluator type: {type(eval_config)}") if isinstance(evaluator_, StringEvaluator): if evaluator_.requires_reference and reference_key is None: raise ValueError( f"Must specify reference_key in smith_eval.RunEvalConfig to use" f" evaluator of type {eval_type_tag} with" f" dataset with multiple output keys: {example_outputs}." ) run_evaluator = smith_eval.StringRunEvaluatorChain.from_run_and_data_type( evaluator_, run_type, data_type, input_key=input_key, prediction_key=prediction_key, reference_key=reference_key, tags=[eval_type_tag], ) elif isinstance(evaluator_, PairwiseStringEvaluator): raise NotImplementedError( f"Run evaluator for {eval_type_tag} is not implemented." " PairwiseStringEvaluators compare the outputs of two different models" " rather than the output of a single model." " Did you mean to use a StringEvaluator instead?" "\nSee: https://python.langchain.com/docs/guides/evaluation/string/" ) else: raise NotImplementedError( f"Run evaluator for {eval_type_tag} is not implemented" ) return run_evaluator def _get_keys( config: smith_eval.RunEvalConfig, run_inputs: Optional[List[str]], run_outputs: Optional[List[str]], example_outputs: Optional[List[str]], ) -> Tuple[Optional[str], Optional[str], Optional[str]]: input_key = _determine_input_key(config, run_inputs) prediction_key = _determine_prediction_key(config, run_outputs) reference_key = _determine_reference_key(config, example_outputs) return input_key, prediction_key, reference_key def _load_run_evaluators( config: smith_eval.RunEvalConfig, run_type: str, data_type: DataType, example_outputs: Optional[List[str]], run_inputs: Optional[List[str]], run_outputs: Optional[List[str]], ) -> List[RunEvaluator]: """ Load run evaluators from a configuration. Args: config: Configuration for the run evaluators. Returns: A list of run evaluators. """ run_evaluators = [] input_key, prediction_key, reference_key = None, None, None if config.evaluators or ( config.custom_evaluators and any([isinstance(e, StringEvaluator) for e in config.custom_evaluators]) ): input_key, prediction_key, reference_key = _get_keys( config, run_inputs, run_outputs, example_outputs ) for eval_config in config.evaluators: run_evaluator = _construct_run_evaluator( eval_config, config.eval_llm, run_type, data_type, example_outputs, reference_key, input_key, prediction_key, ) run_evaluators.append(run_evaluator) custom_evaluators = config.custom_evaluators or [] for custom_evaluator in custom_evaluators: if isinstance(custom_evaluator, RunEvaluator): run_evaluators.append(custom_evaluator) elif isinstance(custom_evaluator, StringEvaluator): run_evaluators.append( smith_eval.StringRunEvaluatorChain.from_run_and_data_type( custom_evaluator, run_type, data_type, input_key=input_key, prediction_key=prediction_key, reference_key=reference_key, ) ) elif callable(custom_evaluator): run_evaluators.append(run_evaluator_dec(custom_evaluator)) else: raise ValueError( f"Unsupported custom evaluator: {custom_evaluator}." f" Expected RunEvaluator or StringEvaluator." ) return run_evaluators ### Async Helpers async def _arun_llm( llm: BaseLanguageModel, inputs: Dict[str, Any], *, tags: Optional[List[str]] = None, callbacks: Callbacks = None, input_mapper: Optional[Callable[[Dict], Any]] = None, metadata: Optional[Dict[str, Any]] = None, ) -> Union[str, BaseMessage]: """Asynchronously run the language model. Args: llm: The language model to run. inputs: The input dictionary. tags: Optional tags to add to the run. callbacks: Optional callbacks to use during the run. input_mapper: Optional function to map inputs to the expected format. Returns: The LLMResult or ChatResult. Raises: ValueError: If the LLM type is unsupported. InputFormatError: If the input format is invalid. """ if input_mapper is not None: prompt_or_messages = input_mapper(inputs) if ( isinstance(prompt_or_messages, str) or isinstance(prompt_or_messages, list) and all(isinstance(msg, BaseMessage) for msg in prompt_or_messages) ): return await llm.ainvoke( prompt_or_messages, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) else: raise InputFormatError( "Input mapper returned invalid format" f" {prompt_or_messages}" "\nExpected a single string or list of chat messages." ) else: try: prompt = _get_prompt(inputs) llm_output: Union[str, BaseMessage] = await llm.ainvoke( prompt, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) except InputFormatError: llm_inputs = _get_messages(inputs) llm_output = await llm.ainvoke( **llm_inputs, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) return llm_output async def _arun_chain( chain: Union[Chain, Runnable], inputs: Dict[str, Any], callbacks: Callbacks, *, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None, metadata: Optional[Dict[str, Any]] = None, ) -> Union[dict, str]: """Run a chain asynchronously on inputs.""" inputs_ = inputs if input_mapper is None else input_mapper(inputs) if ( isinstance(chain, Chain) and isinstance(inputs_, dict) and len(inputs_) == 1 and chain.input_keys ): val = next(iter(inputs_.values())) output = await chain.ainvoke( val, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) else: runnable_config = RunnableConfig( tags=tags or [], callbacks=callbacks, metadata=metadata or {} ) output = await chain.ainvoke(inputs_, config=runnable_config) return output async def _arun_llm_or_chain( example: Example, config: RunnableConfig, *, llm_or_chain_factory: MCF, input_mapper: Optional[Callable[[Dict], Any]] = None, ) -> Union[dict, str, LLMResult, ChatResult]: """Asynchronously run the Chain or language model. Args: example: The example to run. llm_or_chain_factory: The Chain or language model constructor to run. tags: Optional tags to add to the run. callbacks: Optional callbacks to use during the run. input_mapper: Optional function to map the input to the expected format. Returns: A list of outputs. """ chain_or_llm = ( "LLM" if isinstance(llm_or_chain_factory, BaseLanguageModel) else "Chain" ) result = None try: if isinstance(llm_or_chain_factory, BaseLanguageModel): output: Any = await _arun_llm( llm_or_chain_factory, example.inputs, tags=config["tags"], callbacks=config["callbacks"], input_mapper=input_mapper, metadata=config.get("metadata"), ) else: chain = llm_or_chain_factory() output = await _arun_chain( chain, example.inputs, tags=config["tags"], callbacks=config["callbacks"], input_mapper=input_mapper, metadata=config.get("metadata"), ) result = output except Exception as e: logger.warning( f"{chain_or_llm} failed for example {example.id} " f"with inputs {example.inputs}" f"\n{repr(e)}" ) result = EvalError(Error=e) return result ## Sync Utilities def _run_llm( llm: BaseLanguageModel, inputs: Dict[str, Any], callbacks: Callbacks, *, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None, metadata: Optional[Dict[str, Any]] = None, ) -> Union[str, BaseMessage]: """ Run the language model on the example. Args: llm: The language model to run. inputs: The input dictionary. callbacks: The callbacks to use during the run. tags: Optional tags to add to the run. input_mapper: function to map to the inputs dictionary from an Example Returns: The LLMResult or ChatResult. Raises: ValueError: If the LLM type is unsupported. InputFormatError: If the input format is invalid. """ # Most of this is legacy code; we could probably remove a lot of it. if input_mapper is not None: prompt_or_messages = input_mapper(inputs) if ( isinstance(prompt_or_messages, str) or isinstance(prompt_or_messages, list) and all(isinstance(msg, BaseMessage) for msg in prompt_or_messages) ): llm_output: Union[str, BaseMessage] = llm.invoke( prompt_or_messages, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) else: raise InputFormatError( "Input mapper returned invalid format: " f" {prompt_or_messages}" "\nExpected a single string or list of chat messages." ) else: try: llm_prompts = _get_prompt(inputs) llm_output = llm.invoke( llm_prompts, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) except InputFormatError: llm_inputs = _get_messages(inputs) llm_output = llm.invoke( **llm_inputs, config=RunnableConfig(callbacks=callbacks, metadata=metadata or {}), ) return llm_output def _run_chain( chain: Union[Chain, Runnable], inputs: Dict[str, Any], callbacks: Callbacks, *, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None, metadata: Optional[Dict[str, Any]] = None, ) -> Union[Dict, str]: """Run a chain on inputs.""" inputs_ = inputs if input_mapper is None else input_mapper(inputs) if ( isinstance(chain, Chain) and isinstance(inputs_, dict) and len(inputs_) == 1 and chain.input_keys ): val = next(iter(inputs_.values())) output = chain.invoke( val, config=RunnableConfig( callbacks=callbacks, tags=tags or [], metadata=metadata or {} ), ) else: runnable_config = RunnableConfig( tags=tags or [], callbacks=callbacks, metadata=metadata or {} ) output = chain.invoke(inputs_, config=runnable_config) return output def _run_llm_or_chain( example: Example, config: RunnableConfig, *, llm_or_chain_factory: MCF, input_mapper: Optional[Callable[[Dict], Any]] = None, ) -> Union[dict, str, LLMResult, ChatResult]: """ Run the Chain or language model synchronously. Args: example: The example to run. llm_or_chain_factory: The Chain or language model constructor to run. tags: Optional tags to add to the run. callbacks: Optional callbacks to use during the run. Returns: Union[List[dict], List[str], List[LLMResult], List[ChatResult]]: The outputs of the model or chain. """ chain_or_llm = ( "LLM" if isinstance(llm_or_chain_factory, BaseLanguageModel) else "Chain" ) result = None try: if isinstance(llm_or_chain_factory, BaseLanguageModel): output: Any = _run_llm( llm_or_chain_factory, example.inputs, config["callbacks"], tags=config["tags"], input_mapper=input_mapper, metadata=config.get("metadata"), ) else: chain = llm_or_chain_factory() output = _run_chain( chain, example.inputs, config["callbacks"], tags=config["tags"], input_mapper=input_mapper, metadata=config.get("metadata"), ) result = output except Exception as e: error_type = type(e).__name__ logger.warning( f"{chain_or_llm} failed for example {example.id} " f"with inputs {example.inputs}" f"\nError Type: {error_type}, Message: {e}" ) result = EvalError(Error=e) return result def _prepare_eval_run( client: Client, dataset_name: str, llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY, project_name: str, project_metadata: Optional[Dict[str, Any]] = None, tags: Optional[List[str]] = None, dataset_version: Optional[Union[str, datetime]] = None, ) -> Tuple[MCF, TracerSession, Dataset, List[Example]]: wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory, dataset_name) dataset = client.read_dataset(dataset_name=dataset_name) examples = list(client.list_examples(dataset_id=dataset.id, as_of=dataset_version)) if not examples: raise ValueError(f"Dataset {dataset_name} has no example rows.") modified_at = [ex.modified_at for ex in examples if ex.modified_at] # Should always be defined in practice when fetched, # but the typing permits None max_modified_at = max(modified_at) if modified_at else None inferred_version = max_modified_at.isoformat() if max_modified_at else None try: project_metadata = project_metadata or {} git_info = get_git_info() if git_info: project_metadata = { **project_metadata, "git": git_info, } project_metadata["dataset_version"] = inferred_version project = client.create_project( project_name, reference_dataset_id=dataset.id, project_extra={"tags": tags} if tags else {}, metadata=project_metadata, ) except (HTTPError, ValueError, LangSmithError) as e: if "already exists " not in str(e): raise e uid = uuid.uuid4() example_msg = f""" run_on_dataset( ... project_name="{project_name} - {uid}", # Update since {project_name} already exists ) """ raise ValueError( f"Test project {project_name} already exists. Please use a different name:" f"\n\n{example_msg}" ) comparison_url = dataset.url + f"/compare?selectedSessions={project.id}" print( # noqa: T201 f"View the evaluation results for project '{project_name}'" f" at:\n{comparison_url}\n\n" f"View all tests for Dataset {dataset_name} at:\n{dataset.url}", flush=True, ) return wrapped_model, project, dataset, examples class _RowResult(TypedDict, total=False): """A dictionary of the results for a single example row.""" feedback: Optional[List[EvaluationResult]] execution_time: Optional[float] run_id: Optional[str] @dataclasses.dataclass class _DatasetRunContainer: """A container to help manage the state of a eval run.""" client: Client project: TracerSession wrapped_model: MCF examples: List[Example] configs: List[RunnableConfig] batch_evaluators: Optional[List[smith_eval_config.BATCH_EVALUATOR_LIKE]] = None def _merge_test_outputs( self, batch_results: list, all_eval_results: Dict[str, _RowResult], ) -> dict: results: dict = {} for example, output in zip(self.examples, batch_results): row_result = cast(_RowResult, all_eval_results.get(str(example.id), {})) results[str(example.id)] = { "input": example.inputs, "feedback": row_result.get("feedback", []), "execution_time": row_result.get("execution_time"), "run_id": row_result.get("run_id"), } if isinstance(output, EvalError): results[str(example.id)]["Error"] = output.Error else: results[str(example.id)]["output"] = output if example.outputs: results[str(example.id)]["reference"] = example.outputs return results def _run_batch_evaluators(self, runs: Dict[str, Run]) -> List[dict]: evaluators = self.batch_evaluators if not evaluators: return [] runs_list = [runs[str(example.id)] for example in self.examples] aggregate_feedback = [] with concurrent.futures.ThreadPoolExecutor() as executor: for evaluator in evaluators: try: result = evaluator(runs_list, self.examples) if isinstance(result, EvaluationResult): result = result.dict() aggregate_feedback.append(cast(dict, result)) executor.submit( self.client.create_feedback, **result, run_id=None, project_id=self.project.id, ) except Exception as e: logger.error( f"Error running batch evaluator {repr(evaluator)}: {e}" ) return aggregate_feedback def _collect_metrics(self) -> Tuple[Dict[str, _RowResult], Dict[str, Run]]: all_eval_results: dict = {} all_runs: dict = {} for c in self.configs: for callback in cast(list, c["callbacks"]): if isinstance(callback, EvaluatorCallbackHandler): eval_results = callback.logged_eval_results for (_, example_id), v in eval_results.items(): all_eval_results.setdefault(str(example_id), {}).update( {"feedback": v} ) elif isinstance(callback, LangChainTracer): run = callback.latest_run execution_time = ( (run.end_time - run.start_time).total_seconds() if run and run.end_time else None ) run_id = str(run.id) if run else None all_eval_results.setdefault(str(callback.example_id), {}).update( { "execution_time": execution_time, "run_id": run_id, "run": run, } ) all_runs[str(callback.example_id)] = run return cast(Dict[str, _RowResult], all_eval_results), all_runs def _collect_test_results( self, batch_results: List[Union[dict, str, LLMResult, ChatResult]], ) -> TestResult: logger.info("Waiting for evaluators to complete.") wait_for_all_evaluators() all_eval_results, all_runs = self._collect_metrics() aggregate_feedback = None if self.batch_evaluators: logger.info("Running session evaluators.") aggregate_feedback = self._run_batch_evaluators(all_runs) results = self._merge_test_outputs(batch_results, all_eval_results) return TestResult( project_name=self.project.name, results=results, aggregate_metrics=aggregate_feedback, ) def finish(self, batch_results: list, verbose: bool = False) -> TestResult: results = self._collect_test_results(batch_results) if verbose: try: agg_feedback = results.get_aggregate_feedback() _display_aggregate_results(agg_feedback) except Exception as e: logger.debug(f"Failed to print aggregate feedback: {repr(e)}") try: # Closing the project permits name changing and metric optimizations self.client.update_project( self.project.id, end_time=datetime.now(timezone.utc) ) except Exception as e: logger.debug(f"Failed to close project: {repr(e)}") return results @classmethod def prepare( cls, client: Client, dataset_name: str, llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY, project_name: Optional[str], evaluation: Optional[smith_eval.RunEvalConfig] = None, tags: Optional[List[str]] = None, input_mapper: Optional[Callable[[Dict], Any]] = None, concurrency_level: int = 5, project_metadata: Optional[Dict[str, Any]] = None, revision_id: Optional[str] = None, dataset_version: Optional[Union[datetime, str]] = None, ) -> _DatasetRunContainer: project_name = project_name or name_generation.random_name() if revision_id: if not project_metadata: project_metadata = {} project_metadata.update({"revision_id": revision_id}) wrapped_model, project, dataset, examples = _prepare_eval_run( client, dataset_name, llm_or_chain_factory, project_name, project_metadata=project_metadata, tags=tags, dataset_version=dataset_version, ) tags = tags or [] for k, v in (project.metadata.get("git") or {}).items(): tags.append(f"git:{k}={v}") run_metadata = {"dataset_version": project.metadata["dataset_version"]} if revision_id: run_metadata["revision_id"] = revision_id wrapped_model = _wrap_in_chain_factory(llm_or_chain_factory) run_evaluators = _setup_evaluation( wrapped_model, examples, evaluation, dataset.data_type or DataType.kv ) _validate_example_inputs(examples[0], wrapped_model, input_mapper) progress_bar = progress.ProgressBarCallback(len(examples)) configs = [ RunnableConfig( callbacks=[ LangChainTracer( project_name=project.name, client=client, example_id=example.id, ), EvaluatorCallbackHandler( evaluators=run_evaluators or [], client=client, example_id=example.id, max_concurrency=0, ), progress_bar, ], tags=tags, max_concurrency=concurrency_level, metadata=run_metadata, ) for example in examples ] return cls( client=client, project=project, wrapped_model=wrapped_model, examples=examples, configs=configs, batch_evaluators=evaluation.batch_evaluators if evaluation else None, ) def _is_jupyter_environment() -> bool: try: from IPython import get_ipython res = get_ipython() return get_ipython() is not None and "zmqshell" in str(type(res)) except ImportError: return False def _display_aggregate_results(aggregate_results: pd.DataFrame) -> None: if _is_jupyter_environment(): from IPython.display import HTML, display display(HTML("<h3>Experiment Results:</h3>")) display(aggregate_results) else: formatted_string = aggregate_results.to_string( float_format=lambda x: f"{x:.2f}", justify="right" ) print("\n Experiment Results:") # noqa: T201 print(formatted_string) # noqa: T201 _INPUT_MAPPER_DEP_WARNING = ( "The input_mapper argument is deprecated and " "will be removed in a future release. Please add a " " RunnableLambda to your chain to map inputs to the expected format" " instead. Example:\n" "def construct_chain():\n" " my_chain = ...\n" " input_mapper = {'other_key': 'MyOtherInput', 'my_input_key': x}\n" " return input_mapper | my_chain\n" "run_on_dataset(..., llm_or_chain_factory=construct_chain)\n" "(See https://api.python.langchain.com/en/latest/schema/" "langchain.schema.runnable.base.RunnableLambda.html)" ) ## Public API
[docs] async def arun_on_dataset( client: Optional[Client], dataset_name: str, llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY, *, evaluation: Optional[smith_eval.RunEvalConfig] = None, dataset_version: Optional[Union[datetime, str]] = None, concurrency_level: int = 5, project_name: Optional[str] = None, project_metadata: Optional[Dict[str, Any]] = None, verbose: bool = False, revision_id: Optional[str] = None, **kwargs: Any, ) -> Dict[str, Any]: input_mapper = kwargs.pop("input_mapper", None) if input_mapper: warn_deprecated("0.0.305", message=_INPUT_MAPPER_DEP_WARNING, pending=True) if revision_id is None: revision_id = get_langchain_env_var_metadata().get("revision_id") tags = kwargs.pop("tags", None) if tags: warn_deprecated( "0.1.9", message="The tags argument is deprecated and will be" " removed in a future release. Please specify project_metadata instead.", pending=True, ) if kwargs: warn_deprecated( "0.0.305", message="The following arguments are deprecated and " "will be removed in a future release: " f"{kwargs.keys()}.", removal="0.0.305", ) client = client or Client() container = _DatasetRunContainer.prepare( client, dataset_name, llm_or_chain_factory, project_name, evaluation, tags, input_mapper, concurrency_level, project_metadata=project_metadata, revision_id=revision_id, dataset_version=dataset_version, ) batch_results = await runnable_utils.gather_with_concurrency( container.configs[0].get("max_concurrency"), *map( functools.partial( _arun_llm_or_chain, llm_or_chain_factory=container.wrapped_model, input_mapper=input_mapper, ), container.examples, container.configs, ), ) return container.finish(batch_results, verbose=verbose)
[docs] def run_on_dataset( client: Optional[Client], dataset_name: str, llm_or_chain_factory: MODEL_OR_CHAIN_FACTORY, *, evaluation: Optional[smith_eval.RunEvalConfig] = None, dataset_version: Optional[Union[datetime, str]] = None, concurrency_level: int = 5, project_name: Optional[str] = None, project_metadata: Optional[Dict[str, Any]] = None, verbose: bool = False, revision_id: Optional[str] = None, **kwargs: Any, ) -> Dict[str, Any]: input_mapper = kwargs.pop("input_mapper", None) if input_mapper: warn_deprecated("0.0.305", message=_INPUT_MAPPER_DEP_WARNING, pending=True) tags = kwargs.pop("tags", None) if tags: warn_deprecated( "0.1.9", message="The tags argument is deprecated and will be" " removed in a future release. Please specify project_metadata instead.", pending=True, ) if revision_id is None: revision_id = get_langchain_env_var_metadata().get("revision_id") if kwargs: warn_deprecated( "0.0.305", message="The following arguments are deprecated and " "will be removed in a future release: " f"{kwargs.keys()}.", removal="0.0.305", ) client = client or Client() container = _DatasetRunContainer.prepare( client, dataset_name, llm_or_chain_factory, project_name, evaluation, tags, input_mapper, concurrency_level, project_metadata=project_metadata, revision_id=revision_id, dataset_version=dataset_version, ) if concurrency_level == 0: batch_results = [ _run_llm_or_chain( example, config, llm_or_chain_factory=container.wrapped_model, input_mapper=input_mapper, ) for example, config in zip(container.examples, container.configs) ] else: with runnable_config.get_executor_for_config(container.configs[0]) as executor: batch_results = list( executor.map( functools.partial( _run_llm_or_chain, llm_or_chain_factory=container.wrapped_model, input_mapper=input_mapper, ), container.examples, container.configs, ) ) return container.finish(batch_results, verbose=verbose)
_RUN_ON_DATASET_DOCSTRING = """ Run the Chain or language model on a dataset and store traces to the specified project name. Args: dataset_name: Name of the dataset to run the chain on. llm_or_chain_factory: Language model or Chain constructor to run over the dataset. The Chain constructor is used to permit independent calls on each example without carrying over state. evaluation: Configuration for evaluators to run on the results of the chain concurrency_level: The number of async tasks to run concurrently. project_name: Name of the project to store the traces in. Defaults to {dataset_name}-{chain class name}-{datetime}. project_metadata: Optional metadata to add to the project. Useful for storing information the test variant. (prompt version, model version, etc.) client: LangSmith client to use to access the dataset and to log feedback and run traces. verbose: Whether to print progress. tags: Tags to add to each run in the project. revision_id: Optional revision identifier to assign this test run to track the performance of different versions of your system. Returns: A dictionary containing the run's project name and the resulting model outputs. For the (usually faster) async version of this function, see :func:`arun_on_dataset`. Examples -------- .. code-block:: python from langsmith import Client from langchain_openai import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import smith_eval.RunEvalConfig, run_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = smith_eval.RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", smith_eval.RunEvalConfig.Criteria("helpfulness"), smith_eval.RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() run_on_dataset( client, dataset_name="<my_dataset_name>", llm_or_chain_factory=construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the :class:`StringEvaluator <langchain.evaluation.schema.StringEvaluator>` or LangSmith's `RunEvaluator` classes. .. code-block:: python from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = smith_eval.RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) run_on_dataset( client, dataset_name="<my_dataset_name>", llm_or_chain_factory=construct_chain, evaluation=evaluation_config, ) """ # noqa: E501 run_on_dataset.__doc__ = _RUN_ON_DATASET_DOCSTRING arun_on_dataset.__doc__ = _RUN_ON_DATASET_DOCSTRING.replace( "run_on_dataset(", "await arun_on_dataset(" )