import re
import warnings
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
)
import anthropic
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLanguageModel, LangSmithParams
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.prompt_values import PromptValue
from langchain_core.utils import (
get_pydantic_field_names,
)
from langchain_core.utils.utils import (
_build_model_kwargs,
from_env,
secret_from_env,
)
from pydantic import ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
class _AnthropicCommon(BaseLanguageModel):
client: Any = None #: :meta private:
async_client: Any = None #: :meta private:
model: str = Field(default="claude-2", alias="model_name")
"""Model name to use."""
max_tokens_to_sample: int = Field(default=1024, alias="max_tokens")
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = None
"""A non-negative float that tunes the degree of randomness in generation."""
top_k: Optional[int] = None
"""Number of most likely tokens to consider at each step."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
streaming: bool = False
"""Whether to stream the results."""
default_request_timeout: Optional[float] = None
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
max_retries: int = 2
"""Number of retries allowed for requests sent to the Anthropic Completion API."""
anthropic_api_url: Optional[str] = Field(
alias="base_url",
default_factory=from_env(
"ANTHROPIC_API_URL",
default="https://api.anthropic.com",
),
)
"""Base URL for API requests. Only specify if using a proxy or service emulator.
If a value isn't passed in, will attempt to read the value from
ANTHROPIC_API_URL. If not set, the default value of 'https://api.anthropic.com' will
be used.
"""
anthropic_api_key: SecretStr = Field(
alias="api_key",
default_factory=secret_from_env("ANTHROPIC_API_KEY", default=""),
)
"""Automatically read from env var `ANTHROPIC_API_KEY` if not provided."""
HUMAN_PROMPT: Optional[str] = None
AI_PROMPT: Optional[str] = None
count_tokens: Optional[Callable[[str], int]] = None
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict) -> Any:
all_required_field_names = get_pydantic_field_names(cls)
values = _build_model_kwargs(values, all_required_field_names)
return values
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
self.client = anthropic.Anthropic(
base_url=self.anthropic_api_url,
api_key=self.anthropic_api_key.get_secret_value(),
timeout=self.default_request_timeout,
max_retries=self.max_retries,
)
self.async_client = anthropic.AsyncAnthropic(
base_url=self.anthropic_api_url,
api_key=self.anthropic_api_key.get_secret_value(),
timeout=self.default_request_timeout,
max_retries=self.max_retries,
)
self.HUMAN_PROMPT = anthropic.HUMAN_PROMPT
self.AI_PROMPT = anthropic.AI_PROMPT
return self
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Anthropic API."""
d = {
"max_tokens_to_sample": self.max_tokens_to_sample,
"model": self.model,
}
if self.temperature is not None:
d["temperature"] = self.temperature
if self.top_k is not None:
d["top_k"] = self.top_k
if self.top_p is not None:
d["top_p"] = self.top_p
return {**d, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{}, **self._default_params}
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if stop is None:
stop = []
# Never want model to invent new turns of Human / Assistant dialog.
stop.extend([self.HUMAN_PROMPT])
return stop
[docs]
class AnthropicLLM(LLM, _AnthropicCommon):
"""Anthropic large language model.
To use, you should have the environment variable ``ANTHROPIC_API_KEY``
set with your API key, or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_anthropic import AnthropicLLM
model = AnthropicLLM()
"""
model_config = ConfigDict(
populate_by_name=True,
arbitrary_types_allowed=True,
)
@model_validator(mode="before")
@classmethod
def raise_warning(cls, values: Dict) -> Any:
"""Raise warning that this class is deprecated."""
warnings.warn(
"This Anthropic LLM is deprecated. "
"Please use `from langchain_anthropic import ChatAnthropic` "
"instead"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "anthropic-llm"
@property
def lc_secrets(self) -> Dict[str, str]:
return {"anthropic_api_key": "ANTHROPIC_API_KEY"}
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model,
"max_tokens": self.max_tokens_to_sample,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"model_kwargs": self.model_kwargs,
"streaming": self.streaming,
"default_request_timeout": self.default_request_timeout,
"max_retries": self.max_retries,
}
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get standard params for tracing."""
params = super()._get_ls_params(stop=stop, **kwargs)
identifying_params = self._identifying_params
if max_tokens := kwargs.get(
"max_tokens_to_sample",
identifying_params.get("max_tokens"),
):
params["ls_max_tokens"] = max_tokens
return params
def _wrap_prompt(self, prompt: str) -> str:
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
raise NameError("Please ensure the anthropic package is loaded")
if prompt.startswith(self.HUMAN_PROMPT):
return prompt # Already wrapped.
# Guard against common errors in specifying wrong number of newlines.
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
if n_subs == 1:
return corrected_prompt
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Anthropic's completion endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "What are the biggest risks facing humanity?"
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
response = model.invoke(prompt)
"""
if self.streaming:
completion = ""
for chunk in self._stream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = self.client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
[docs]
def convert_prompt(self, prompt: PromptValue) -> str:
return self._wrap_prompt(prompt.to_string())
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Anthropic's completion endpoint asynchronously."""
if self.streaming:
completion = ""
async for chunk in self._astream(
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
):
completion += chunk.text
return completion
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
response = await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
**params,
)
return response.completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
for token in self.client.completions.create(
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
):
chunk = GenerationChunk(text=token.completion)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
r"""Call Anthropic completion_stream and return the resulting generator.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens from Anthropic.
Example:
.. code-block:: python
prompt = "Write a poem about a stream."
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
generator = anthropic.stream(prompt)
for token in generator:
yield token
"""
stop = self._get_anthropic_stop(stop)
params = {**self._default_params, **kwargs}
async for token in await self.async_client.completions.create(
prompt=self._wrap_prompt(prompt),
stop_sequences=stop,
stream=True,
**params,
):
chunk = GenerationChunk(text=token.completion)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
[docs]
def get_num_tokens(self, text: str) -> int:
"""Calculate number of tokens."""
raise NotImplementedError(
"Anthropic's legacy count_tokens method was removed in anthropic 0.39.0 "
"and langchain-anthropic 0.3.0. Please use "
"ChatAnthropic.get_num_tokens_from_messages instead."
)
[docs]
@deprecated(since="0.1.0", removal="1.0.0", alternative="AnthropicLLM")
class Anthropic(AnthropicLLM):
"""Anthropic large language model."""
pass