[docs]defenforce_stop_tokens(text:str,stop:List[str])->str:"""Cut off the text as soon as any stop words occur."""returnre.split("|".join(stop),text,maxsplit=1)[0]
[docs]classLineIterator:""" A helper class for parsing the byte stream input. The output of the model will be in the following format: b'{"outputs": [" a"]}\n' b'{"outputs": [" challenging"]}\n' b'{"outputs": [" problem"]}\n' ... While usually each PayloadPart event from the event stream will contain a byte array with a full json, this is not guaranteed and some of the json objects may be split acrossPayloadPart events. For example: {'PayloadPart': {'Bytes': b'{"outputs": '}} {'PayloadPart': {'Bytes': b'[" problem"]}\n'}} This class accounts for this by concatenating bytes written via the 'write' function and then exposing a method which will return lines (ending with a '\n' character) within the buffer via the 'scan_lines' function. It maintains the position of the last read position to ensure that previous bytes are not exposed again. For more details see: https://aws.amazon.com/blogs/machine-learning/elevating-the-generative-ai-experience-introducing-streaming-support-in-amazon-sagemaker-hosting/ """
[docs]classLLMContentHandler(ContentHandlerBase[str,str]):"""Content handler for LLM class."""
[docs]classSagemakerEndpoint(LLM):"""Sagemaker Inference Endpoint models. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """""" Args: region_name: The aws region e.g., `us-west-2`. Falls back to AWS_REGION/AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. client: boto3 client for Sagemaker Endpoint content_handler: Implementation for model specific LLMContentHandler Example: .. code-block:: python from langchain_community.llms import SagemakerEndpoint endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpoint( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) # Usage with Inference Component se = SagemakerEndpoint( endpoint_name=endpoint_name, inference_component_name=inference_component_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) #Use with boto3 client client = boto3.client( "sagemaker-runtime", region_name=region_name ) se = SagemakerEndpoint( endpoint_name=endpoint_name, client=client ) """client:Any=None"""Boto3 client for sagemaker runtime"""endpoint_name:str="""""The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region."""inference_component_name:Optional[str]=None"""Optional name of the inference component to invoke if specified with endpoint name."""region_name:str="""""The aws region where the Sagemaker model is deployed, eg. `us-west-2`."""credentials_profile_name:Optional[str]=None"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """aws_access_key_id:Optional[SecretStr]=Field(default_factory=secret_from_env("AWS_ACCESS_KEY_ID",default=None))"""AWS access key id. If provided, aws_secret_access_key must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_ACCESS_KEY_ID' environment variable. """aws_secret_access_key:Optional[SecretStr]=Field(default_factory=secret_from_env("AWS_SECRET_ACCESS_KEY",default=None))"""AWS secret_access_key. If provided, aws_access_key_id must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_SECRET_ACCESS_KEY' environment variable. """aws_session_token:Optional[SecretStr]=Field(default_factory=secret_from_env("AWS_SESSION_TOKEN",default=None))"""AWS session token. If provided, aws_access_key_id and aws_secret_access_key must also be provided. Not required unless using temporary credentials. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_SESSION_TOKEN' environment variable. """config:Any=None"""An optional botocore.config.Config instance to pass to the client."""endpoint_url:Optional[str]=None"""Needed if you don't want to default to us-east-1 endpoint"""content_handler:LLMContentHandler"""The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """streaming:bool=False"""Whether to stream the results."""""" Example: .. code-block:: python from langchain_community.llms.sagemaker_endpoint import LLMContentHandler class ContentHandler(LLMContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_str = json.dumps({prompt: prompt, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json[0]["generated_text"] """model_kwargs:Optional[Dict]=None"""Keyword arguments to pass to the model."""endpoint_kwargs:Optional[Dict]=None"""Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """model_config=ConfigDict(extra="forbid",)@model_validator(mode="after")defvalidate_environment(self)->Self:"""Dont do anything if client provided externally"""ifself.clientisNone:self.client=create_aws_client(region_name=self.region_name,credentials_profile_name=self.credentials_profile_name,aws_access_key_id=self.aws_access_key_id,aws_secret_access_key=self.aws_secret_access_key,aws_session_token=self.aws_session_token,endpoint_url=self.endpoint_url,config=self.config,service_name="sagemaker-runtime",)returnself@propertydef_identifying_params(self)->Mapping[str,Any]:"""Get the identifying parameters."""_model_kwargs=self.model_kwargsor{}return{**{"endpoint_name":self.endpoint_name},**{"inference_component_name":self.inference_component_name},**{"model_kwargs":_model_kwargs},}@propertydef_llm_type(self)->str:"""Return type of llm."""return"sagemaker_endpoint"def_stream(self,prompt:str,stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->Iterator[GenerationChunk]:_model_kwargs=self.model_kwargsor{}_model_kwargs={**_model_kwargs,**kwargs}_endpoint_kwargs=self.endpoint_kwargsor{}invocation_params={"EndpointName":self.endpoint_name,"Body":self.content_handler.transform_input(prompt,_model_kwargs),"ContentType":self.content_handler.content_type,**_endpoint_kwargs,}# If inference_component_name is specified, append it to invocation_paramsifself.inference_component_name:invocation_params["InferenceComponentName"]=self.inference_component_nametry:resp=self.client.invoke_endpoint_with_response_stream(**invocation_params)iterator=LineIterator(resp["Body"])forlineiniterator:text=self.content_handler.transform_output(line)ifstopisnotNone:text=enforce_stop_tokens(text,stop)iftext:chunk=GenerationChunk(text=text)yieldchunkifrun_manager:run_manager.on_llm_new_token(chunk.text)exceptExceptionase:logger.exception("Error raised by streaming inference endpoint")ifrun_managerisnotNone:run_manager.on_llm_error(e)raiseedef_call(self,prompt:str,stop:Optional[List[str]]=None,run_manager:Optional[CallbackManagerForLLMRun]=None,**kwargs:Any,)->str:"""Call out to SageMaker inference endpoint or inference component of SageMaker inference endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = se("Tell me a joke.") """_model_kwargs=self.model_kwargsor{}_model_kwargs={**_model_kwargs,**kwargs}_endpoint_kwargs=self.endpoint_kwargsor{}body=self.content_handler.transform_input(prompt,_model_kwargs)content_type=self.content_handler.content_typeaccepts=self.content_handler.acceptsinvocation_params={"EndpointName":self.endpoint_name,"Body":body,"ContentType":content_type,"Accept":accepts,**_endpoint_kwargs,}# If inference_compoent_name is specified, append it to invocation_paramsifself.inference_component_name:invocation_params["InferenceComponentName"]=self.inference_component_nameifself.streamingandrun_manager:completion:str=""forchunkinself._stream(prompt,stop,run_manager,**kwargs):completion+=chunk.textreturncompletiontry:response=self.client.invoke_endpoint(**invocation_params)exceptExceptionase:logger.exception("Error raised by inference endpoint")ifrun_managerisnotNone:run_manager.on_llm_error(e)raiseetext=self.content_handler.transform_output(response["Body"])ifstopisnotNone:text=enforce_stop_tokens(text,stop)returntext