Source code for langchain_aws.retrievers.bedrock

import json
from typing import Any, Dict, List, Literal, Optional, Union

from botocore.client import Config
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import secret_from_env
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Annotated

from langchain_aws.utils import create_aws_client

FilterValue = Union[Dict[str, Any], List[Any], int, float, str, bool, None]
Filter = Dict[str, FilterValue]


[docs] class SearchFilter(BaseModel): """Filter configuration for retrieval.""" andAll: Optional[List["SearchFilter"]] = None orAll: Optional[List["SearchFilter"]] = None equals: Optional[Filter] = None greaterThan: Optional[Filter] = None greaterThanOrEquals: Optional[Filter] = None in_: Optional[Filter] = Field(None, alias="in") lessThan: Optional[Filter] = None lessThanOrEquals: Optional[Filter] = None listContains: Optional[Filter] = None notEquals: Optional[Filter] = None notIn: Optional[Filter] = Field(None, alias="notIn") startsWith: Optional[Filter] = None stringContains: Optional[Filter] = None model_config = ConfigDict( populate_by_name=True, )
[docs] class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg] """Configuration for vector search.""" numberOfResults: int = 4 filter: Optional[SearchFilter] = None overrideSearchType: Optional[Literal["HYBRID", "SEMANTIC"]] = None
[docs] class RetrievalConfig(BaseModel, extra="allow"): # type: ignore[call-arg] """Configuration for retrieval.""" vectorSearchConfiguration: VectorSearchConfig nextToken: Optional[str] = None
[docs] class AmazonKnowledgeBasesRetriever(BaseRetriever): """`Amazon Bedrock Knowledge Bases` retrieval. See https://aws.amazon.com/bedrock/knowledge-bases for more info. Args: knowledge_base_id: Knowledge Base ID. region_name: The aws region e.g., `us-west-2`. Fallback to AWS_REGION/AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config. credentials_profile_name: The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. aws_access_key_id: AWS access key id. If provided, aws_secret_access_key must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_ACCESS_KEY_ID' environment variable. aws_secret_access_key: AWS secret_access_key. If provided, aws_access_key_id must also be provided. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_SECRET_ACCESS_KEY' environment variable. aws_session_token: AWS session token. If provided, aws_access_key_id and aws_secret_access_key must also be provided. Not required unless using temporary credentials. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If not provided, will be read from 'AWS_SESSION_TOKEN' environment variable. endpoint_url: Needed if you don't want to default to us-east-1 endpoint. config: An optional botocore.config.Config instance to pass to the client. client: boto3 client for bedrock agent runtime. retrieval_config: Optional configuration for retrieval specified as a Python object (RetrievalConfig) or as a dictionary Example: .. code-block:: python from langchain_community.retrievers import AmazonKnowledgeBasesRetriever retriever = AmazonKnowledgeBasesRetriever( knowledge_base_id="<knowledge-base-id>", retrieval_config={ "vectorSearchConfiguration": { "numberOfResults": 4 } }, ) """ knowledge_base_id: str region_name: Optional[str] = None credentials_profile_name: Optional[str] = None aws_access_key_id: Optional[SecretStr] = Field( default_factory=secret_from_env("AWS_ACCESS_KEY_ID", default=None) ) aws_secret_access_key: Optional[SecretStr] = Field( default_factory=secret_from_env("AWS_SECRET_ACCESS_KEY", default=None) ) aws_session_token: Optional[SecretStr] = Field( default_factory=secret_from_env("AWS_SESSION_TOKEN", default=None) ) endpoint_url: Optional[str] = None config: Any = None client: Any = None retrieval_config: Optional[Union[RetrievalConfig, Dict[str, Any]]] = None min_score_confidence: Annotated[ Optional[float], Field(ge=0.0, le=1.0, default=None) ] @model_validator(mode="before") @classmethod def create_client(cls, values: Dict[str, Any]) -> Any: if values.get("client") is None: values["client"] = create_aws_client( region_name=values.get("region_name"), credentials_profile_name=values.get("credentials_profile_name"), aws_access_key_id=values.get("aws_access_key_id"), aws_secret_access_key=values.get("aws_secret_access_key"), aws_session_token=values.get("aws_session_token"), endpoint_url=values.get("endpoint_url"), config=values.get("config") or Config( connect_timeout=120, read_timeout=120, retries={"max_attempts": 0} ), service_name="bedrock-agent-runtime", ) return values def _filter_by_score_confidence(self, docs: List[Document]) -> List[Document]: """ Filter out the records that have a score confidence less than the required threshold. """ if not self.min_score_confidence: return docs filtered_docs = [ item for item in docs if ( item.metadata.get("score") is not None and item.metadata.get("score", 0.0) >= self.min_score_confidence ) ] return filtered_docs def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """ Get relevant document from a KnowledgeBase :param query: the user's query :param run_manager: The callback handler to use :return: List of relevant documents """ retrieve_request: Dict[str, Any] = self._get_retrieve_request(query) response = self.client.retrieve(**retrieve_request) results = response["retrievalResults"] documents: List[ Document ] = AmazonKnowledgeBasesRetriever._retrieval_results_to_documents(results) return self._filter_by_score_confidence(docs=documents) def _get_retrieve_request(self, query: str) -> Dict[str, Any]: """ Build a Retrieve request :param query: :return: """ request: Dict[str, Any] = { "retrievalQuery": {"text": query.strip()}, "knowledgeBaseId": self.knowledge_base_id, } if self.retrieval_config: request["retrievalConfiguration"] = self.retrieval_config.model_dump( exclude_none=True, by_alias=True ) return request @staticmethod def _retrieval_results_to_documents( results: List[Dict[str, Any]], ) -> List[Document]: """ Convert the Retrieve API results to LangChain Documents :param results: Retrieve API results list :return: List of LangChain Documents """ documents = [] for result in results: content = AmazonKnowledgeBasesRetriever._get_content_from_result(result) result["type"] = result.get("content", {}).get("type", "TEXT") result.pop("content") if "score" not in result: result["score"] = 0 if "metadata" in result: result["source_metadata"] = result.pop("metadata") documents.append( Document( page_content=content, metadata=result, ) ) return documents @staticmethod def _get_content_from_result(result: Dict[str, Any]) -> Optional[str]: """ Convert the content from one Retrieve API result to string :param result: Retrieve API search result :return: string representation of the content attribute """ if not result: raise ValueError("Invalid search result") content: dict = result.get("content") if not content: raise ValueError( "Invalid search result, content is missing from the result" ) if not content.get("type"): return content.get("text") if content["type"] == "TEXT": return content.get("text") elif content["type"] == "IMAGE": return content.get("byteContent") elif content["type"] == "ROW": row: Optional[List[dict]] = content.get("row", []) return json.dumps(row if row else []) else: # future proofing this class to prevent code breaks if new types # are introduced return None