"""Wrapper around Cerebras' Chat Completions API."""
from typing import Any, Dict, List, Optional
import openai
from langchain_core.language_models.chat_models import LangSmithParams
from langchain_core.utils import (
from_env,
secret_from_env,
)
# We ignore the "unused imports" here since we want to reexport these from this package.
from langchain_openai.chat_models.base import (
BaseChatOpenAI,
)
from pydantic import Field, SecretStr, model_validator
from typing_extensions import Self
CEREBRAS_BASE_URL = "https://api.cerebras.ai/v1/"
[docs]
class ChatCerebras(BaseChatOpenAI):
r"""ChatCerebras chat model.
Setup:
Install ``langchain-cerebras`` and set environment variable ``CEREBRAS_API_KEY``.
.. code-block:: bash
pip install -U langchain-cerebras
export CEREBRAS_API_KEY="your-api-key"
Key init args — completion params:
model: str
Name of model to use.
temperature: float
Sampling temperature.
max_tokens: Optional[int]
Max number of tokens to generate.
Key init args — client params:
timeout: Union[float, Tuple[float, float], Any, None]
Timeout for requests.
max_retries: int
Max number of retries.
api_key: Optional[str]
Cerebras API key. If not passed in will be read from env var CEREBRAS_API_KEY.
Instantiate:
.. code-block:: python
from langchain_cerebras import ChatCerebras
llm = ChatCerebras(
model="llama-3.3-70b",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...",
# other params...
)
Invoke:
.. code-block:: python
messages = [
(
"system",
"You are a helpful translator. Translate the user sentence to French.",
),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
AIMessage(
content='The translation of "I love programming" to French is:\n\n"J\'adore programmer."',
response_metadata={
'token_usage': {'completion_tokens': 20, 'prompt_tokens': 32, 'total_tokens': 52},
'model_name': 'llama-3.3-70b',
'system_fingerprint': 'fp_679dff74c0',
'finish_reason': 'stop',
},
id='run-377c2887-30ef-417e-b0f5-83efc8844f12-0',
usage_metadata={'input_tokens': 32, 'output_tokens': 20, 'total_tokens': 52})
Stream:
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
content='' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='The' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' translation' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' of' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' "' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='I' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' love' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' programming' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='"' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' to' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' French' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' is' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=':\n\n' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='"' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='J' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content="'" id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='ad' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='ore' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content=' programmer' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='."' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
content='' response_metadata={'finish_reason': 'stop', 'model_name': 'llama-3.3-70b', 'system_fingerprint': 'fp_679dff74c0'} id='run-3f9dc84e-208f-48da-b15d-e552b6759c24'
Async:
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
.. code-block:: python
AIMessage(
content='The translation of "I love programming" to French is:\n\n"J\'adore programmer."',
response_metadata={
'token_usage': {'completion_tokens': 20, 'prompt_tokens': 32, 'total_tokens': 52},
'model_name': 'llama-3.3-70b',
'system_fingerprint': 'fp_679dff74c0',
'finish_reason': 'stop',
},
id='run-377c2887-30ef-417e-b0f5-83efc8844f12-0',
usage_metadata={'input_tokens': 32, 'output_tokens': 20, 'total_tokens': 52})
Tool calling:
.. code-block:: python
from langchain_core.pydantic_v1 import BaseModel, Field
llm = ChatCerebras(model="llama-3.3-70b")
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke(
"Which city is bigger: LA or NY?"
)
ai_msg.tool_calls
.. code-block:: python
[
{
'name': 'GetPopulation',
'args': {'location': 'NY'},
'id': 'call_m5tstyn2004pre9bfuxvom8x',
'type': 'tool_call'
},
{
'name': 'GetPopulation',
'args': {'location': 'LA'},
'id': 'call_0vjgq455gq1av5sp9eb1pw6a',
'type': 'tool_call'
}
]
Structured output:
.. code-block:: python
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10")
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
.. code-block:: python
Joke(
setup='Why was the cat sitting on the computer?',
punchline='To keep an eye on the mouse!',
rating=7
)
JSON mode:
.. code-block:: python
json_llm = llm.bind(response_format={"type": "json_object"})
ai_msg = json_llm.invoke(
"Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]"
)
ai_msg.content
.. code-block:: python
' {\\n"random_ints": [\\n13,\\n54,\\n78,\\n45,\\n67,\\n90,\\n11,\\n29,\\n84,\\n33\\n]\\n}'
Token usage:
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{'input_tokens': 37, 'output_tokens': 6, 'total_tokens': 43}
Response metadata
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{
'token_usage': {
'completion_tokens': 4,
'prompt_tokens': 19,
'total_tokens': 23
},
'model_name': 'mistralai/Mixtral-8x7B-Instruct-v0.1',
'system_fingerprint': None,
'finish_reason': 'eos',
'logprobs': None
}
""" # noqa: E501
@property
def lc_secrets(self) -> Dict[str, str]:
"""A map of constructor argument names to secret ids.
For example,
{"cerebras_api_key": "CEREBRAS_API_KEY"}
"""
return {"cerebras_api_key": "CEREBRAS_API_KEY"}
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "chat_models", "cerebras"]
@property
def lc_attributes(self) -> Dict[str, Any]:
"""List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
"""
attributes: Dict[str, Any] = {}
if self.cerebras_api_base:
attributes["cerebras_api_base"] = self.cerebras_api_base
if self.cerebras_proxy:
attributes["cerebras_proxy"] = self.cerebras_proxy
return attributes
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "cerebras-chat"
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get the parameters used to invoke the model."""
params = super()._get_ls_params(stop=stop, **kwargs)
params["ls_provider"] = "cerebras"
return params
model_name: str = Field(alias="model")
"""Model name to use."""
cerebras_api_key: Optional[SecretStr] = Field(
alias="api_key",
default_factory=secret_from_env("CEREBRAS_API_KEY", default=None),
)
"""Automatically inferred from env are `CEREBRAS_API_KEY` if not provided."""
cerebras_api_base: str = Field(
default_factory=from_env("CEREBRAS_API_BASE", default=CEREBRAS_BASE_URL),
alias="base_url",
)
cerebras_proxy: str = Field(default_factory=from_env("CEREBRAS_PROXY", default=""))
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that api key and python package exists in environment."""
if self.n < 1:
raise ValueError("n must be at least 1.")
if self.n > 1 and self.streaming:
raise ValueError("n must be 1 when streaming.")
client_params = {
"api_key": (
self.cerebras_api_key.get_secret_value()
if self.cerebras_api_key
else None
),
# Ensure we always fallback to the Cerebras API url.
"base_url": self.cerebras_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
}
if self.cerebras_proxy and (self.http_client or self.http_async_client):
raise ValueError(
"Cannot specify 'cerebras_proxy' if one of "
"'http_client'/'http_async_client' is already specified. Received:\n"
f"{self.cerebras_proxy=}\n{self.http_client=}\n{self.http_async_client=}"
)
if not self.client:
if self.cerebras_proxy and not self.http_client:
try:
import httpx
except ImportError as e:
raise ImportError(
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
self.http_client = httpx.Client(proxy=self.cerebras_proxy)
sync_specific = {"http_client": self.http_client}
self.root_client = openai.OpenAI(**client_params, **sync_specific) # type: ignore
self.client = self.root_client.chat.completions
if not self.async_client:
if self.cerebras_proxy and not self.http_async_client:
try:
import httpx
except ImportError as e:
raise ImportError(
"Could not import httpx python package. "
"Please install it with `pip install httpx`."
) from e
self.http_async_client = httpx.AsyncClient(proxy=self.cerebras_proxy)
async_specific = {"http_client": self.http_async_client}
self.root_async_client = openai.AsyncOpenAI(
**client_params, # type: ignore
**async_specific, # type: ignore
)
self.async_client = self.root_async_client.chat.completions
return self