[docs]classCohereRerank(BaseDocumentCompressor):"""Document compressor that uses `Cohere Rerank API`."""client:Any=None"""Cohere client to use for compressing documents."""top_n:Optional[int]=3"""Number of documents to return."""model:Optional[str]=None"""Model to use for reranking. Mandatory to specify the model name."""cohere_api_key:Optional[SecretStr]=Field(default_factory=secret_from_env("COHERE_API_KEY",default=None))"""Cohere API key. Must be specified directly or via environment variable COHERE_API_KEY."""base_url:Optional[str]=None"""Override the default Cohere API URL."""user_agent:str="langchain:partner""""Identifier for the application making the request."""model_config=ConfigDict(extra="forbid",arbitrary_types_allowed=True,)@model_validator(mode="after")defvalidate_environment(self)->Self:# type: ignore[valid-type]"""Validate that api key and python package exists in environment."""ifnotself.client:ifisinstance(self.cohere_api_key,SecretStr):cohere_api_key:Optional[str]=self.cohere_api_key.get_secret_value()else:cohere_api_key=self.cohere_api_keyclient_name=self.user_agentself.client=cohere.ClientV2(cohere_api_key,client_name=client_name,base_url=self.base_url,)elifnotisinstance(self.client,cohere.ClientV2):raiseValueError("The 'client' parameter must be an instance of cohere.ClientV2.\n""You may create the ClientV2 object like:\n\n""import cohere\nclient = cohere.ClientV2(...)")returnself@model_validator(mode="after")defvalidate_model_specified(self)->Self:# type: ignore[valid-type]"""Validate that model is specified."""ifnotself.model:raiseValueError("Did not find `model`! Please "" pass `model` as a named parameter."" Please check out"" https://docs.cohere.com/reference/rerank"" for available models.")returnselfdef_document_to_str(self,document:Union[str,Document,dict],rank_fields:Optional[Sequence[str]]=None,)->str:ifisinstance(document,Document):returndocument.page_contentelifisinstance(document,dict):filtered_dict=documentifrank_fields:filtered_dict={}forkeyinrank_fields:ifkeyindocument:filtered_dict[key]=document[key]returnyaml.dump(filtered_dict,sort_keys=False)else:returndocument
[docs]defrerank(self,documents:Sequence[Union[str,Document,dict]],query:str,*,rank_fields:Optional[Sequence[str]]=None,model:Optional[str]=None,top_n:Optional[int]=-1,max_tokens_per_doc:Optional[int]=None,)->List[Dict[str,Any]]:"""Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. rank_fields: A sequence of keys to use for reranking. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. max_tokens_per_doc : Documents will be truncated to the specified number of tokens. Defaults to 4000. """# noqa: E501iflen(documents)==0:# to avoid empty api callreturn[]docs=[self._document_to_str(doc,rank_fields)fordocindocuments]model=modelorself.modeltop_n=top_nif(top_nisNoneortop_n>0)elseself.top_nresults=self.client.rerank(query=query,documents=docs,model=model,top_n=top_n,max_tokens_per_doc=max_tokens_per_doc,)result_dicts=[]forresinresults.results:result_dicts.append({"index":res.index,"relevance_score":res.relevance_score})returnresult_dicts
[docs]defcompress_documents(self,documents:Sequence[Document],query:str,callbacks:Optional[Callbacks]=None,)->Sequence[Document]:""" Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """compressed=[]forresinself.rerank(documents,query):doc=documents[res["index"]]doc_copy=Document(doc.page_content,metadata=deepcopy(doc.metadata))doc_copy.metadata["relevance_score"]=res["relevance_score"]compressed.append(doc_copy)returncompressed