Source code for langchain_community.adapters.openai

from __future__ import annotations

import importlib
from typing import (
    Any,
    AsyncIterator,
    Dict,
    Iterable,
    List,
    Mapping,
    Sequence,
    Union,
    overload,
)

from langchain_core.chat_sessions import ChatSession
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    FunctionMessage,
    HumanMessage,
    SystemMessage,
    ToolMessage,
)
from pydantic import BaseModel
from typing_extensions import Literal


[docs] async def aenumerate( iterable: AsyncIterator[Any], start: int = 0 ) -> AsyncIterator[tuple[int, Any]]: """Async version of enumerate function.""" i = start async for x in iterable: yield i, x i += 1
[docs] class IndexableBaseModel(BaseModel): """Allows a BaseModel to return its fields by string variable indexing.""" def __getitem__(self, item: str) -> Any: return getattr(self, item)
[docs] class Choice(IndexableBaseModel): """Choice.""" message: dict
[docs] class ChatCompletions(IndexableBaseModel): """Chat completions.""" choices: List[Choice]
[docs] class ChoiceChunk(IndexableBaseModel): """Choice chunk.""" delta: dict
[docs] class ChatCompletionChunk(IndexableBaseModel): """Chat completion chunk.""" choices: List[ChoiceChunk]
[docs] def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: """Convert a dictionary to a LangChain message. Args: _dict: The dictionary. Returns: The LangChain message. """ role = _dict.get("role") if role == "user": return HumanMessage(content=_dict.get("content", "")) elif role == "assistant": # Fix for azure # Also OpenAI returns None for tool invocations content = _dict.get("content", "") or "" additional_kwargs: Dict = {} if function_call := _dict.get("function_call"): additional_kwargs["function_call"] = dict(function_call) if tool_calls := _dict.get("tool_calls"): additional_kwargs["tool_calls"] = tool_calls if context := _dict.get("context"): additional_kwargs["context"] = context return AIMessage(content=content, additional_kwargs=additional_kwargs) elif role == "system": return SystemMessage(content=_dict.get("content", "")) elif role == "function": return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name")) # type: ignore[arg-type] elif role == "tool": additional_kwargs = {} if "name" in _dict: additional_kwargs["name"] = _dict["name"] return ToolMessage( content=_dict.get("content", ""), tool_call_id=_dict.get("tool_call_id"), # type: ignore[arg-type] additional_kwargs=additional_kwargs, ) else: return ChatMessage(content=_dict.get("content", ""), role=role) # type: ignore[arg-type]
[docs] def convert_message_to_dict(message: BaseMessage) -> dict: """Convert a LangChain message to a dictionary. Args: message: The LangChain message. Returns: The dictionary. """ message_dict: Dict[str, Any] if isinstance(message, ChatMessage): message_dict = {"role": message.role, "content": message.content} elif isinstance(message, HumanMessage): message_dict = {"role": "user", "content": message.content} elif isinstance(message, AIMessage): message_dict = {"role": "assistant", "content": message.content} if "function_call" in message.additional_kwargs: message_dict["function_call"] = message.additional_kwargs["function_call"] # If function call only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None if "tool_calls" in message.additional_kwargs: message_dict["tool_calls"] = message.additional_kwargs["tool_calls"] # If tool calls only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None if "context" in message.additional_kwargs: message_dict["context"] = message.additional_kwargs["context"] # If context only, content is None not empty string if message_dict["content"] == "": message_dict["content"] = None elif isinstance(message, SystemMessage): message_dict = {"role": "system", "content": message.content} elif isinstance(message, FunctionMessage): message_dict = { "role": "function", "content": message.content, "name": message.name, } elif isinstance(message, ToolMessage): message_dict = { "role": "tool", "content": message.content, "tool_call_id": message.tool_call_id, } else: raise TypeError(f"Got unknown type {message}") if "name" in message.additional_kwargs: message_dict["name"] = message.additional_kwargs["name"] return message_dict
[docs] def convert_openai_messages(messages: Sequence[Dict[str, Any]]) -> List[BaseMessage]: """Convert dictionaries representing OpenAI messages to LangChain format. Args: messages: List of dictionaries representing OpenAI messages Returns: List of LangChain BaseMessage objects. """ return [convert_dict_to_message(m) for m in messages]
def _convert_message_chunk(chunk: BaseMessageChunk, i: int) -> dict: _dict: Dict[str, Any] = {} if isinstance(chunk, AIMessageChunk): if i == 0: # Only shows up in the first chunk _dict["role"] = "assistant" if "function_call" in chunk.additional_kwargs: _dict["function_call"] = chunk.additional_kwargs["function_call"] # If the first chunk is a function call, the content is not empty string, # not missing, but None. if i == 0: _dict["content"] = None if "tool_calls" in chunk.additional_kwargs: _dict["tool_calls"] = chunk.additional_kwargs["tool_calls"] # If the first chunk is tool calls, the content is not empty string, # not missing, but None. if i == 0: _dict["content"] = None else: _dict["content"] = chunk.content else: raise ValueError(f"Got unexpected streaming chunk type: {type(chunk)}") # This only happens at the end of streams, and OpenAI returns as empty dict if _dict == {"content": ""}: _dict = {} return _dict def _convert_message_chunk_to_delta(chunk: BaseMessageChunk, i: int) -> Dict[str, Any]: _dict = _convert_message_chunk(chunk, i) return {"choices": [{"delta": _dict}]}
[docs] class ChatCompletion: """Chat completion.""" @overload @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[False] = False, **kwargs: Any, ) -> dict: ... @overload @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[True], **kwargs: Any, ) -> Iterable: ...
[docs] @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: bool = False, **kwargs: Any, ) -> Union[dict, Iterable]: models = importlib.import_module("langchain.chat_models") model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = model_config.invoke(converted_messages) return {"choices": [{"message": convert_message_to_dict(result)}]} else: return ( _convert_message_chunk_to_delta(c, i) for i, c in enumerate(model_config.stream(converted_messages)) )
@overload @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[False] = False, **kwargs: Any, ) -> dict: ... @overload @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[True], **kwargs: Any, ) -> AsyncIterator: ...
[docs] @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: bool = False, **kwargs: Any, ) -> Union[dict, AsyncIterator]: models = importlib.import_module("langchain.chat_models") model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = await model_config.ainvoke(converted_messages) return {"choices": [{"message": convert_message_to_dict(result)}]} else: return ( _convert_message_chunk_to_delta(c, i) async for i, c in aenumerate(model_config.astream(converted_messages)) )
def _has_assistant_message(session: ChatSession) -> bool: """Check if chat session has an assistant message.""" return any([isinstance(m, AIMessage) for m in session["messages"]])
[docs] def convert_messages_for_finetuning( sessions: Iterable[ChatSession], ) -> List[List[dict]]: """Convert messages to a list of lists of dictionaries for fine-tuning. Args: sessions: The chat sessions. Returns: The list of lists of dictionaries. """ return [ [convert_message_to_dict(s) for s in session["messages"]] for session in sessions if _has_assistant_message(session) ]
[docs] class Completions: """Completions.""" @overload @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[False] = False, **kwargs: Any, ) -> ChatCompletions: ... @overload @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[True], **kwargs: Any, ) -> Iterable: ...
[docs] @staticmethod def create( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: bool = False, **kwargs: Any, ) -> Union[ChatCompletions, Iterable]: models = importlib.import_module("langchain.chat_models") model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = model_config.invoke(converted_messages) return ChatCompletions( choices=[Choice(message=convert_message_to_dict(result))] ) else: return ( ChatCompletionChunk( choices=[ChoiceChunk(delta=_convert_message_chunk(c, i))] ) for i, c in enumerate(model_config.stream(converted_messages)) )
@overload @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[False] = False, **kwargs: Any, ) -> ChatCompletions: ... @overload @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: Literal[True], **kwargs: Any, ) -> AsyncIterator: ...
[docs] @staticmethod async def acreate( messages: Sequence[Dict[str, Any]], *, provider: str = "ChatOpenAI", stream: bool = False, **kwargs: Any, ) -> Union[ChatCompletions, AsyncIterator]: models = importlib.import_module("langchain.chat_models") model_cls = getattr(models, provider) model_config = model_cls(**kwargs) converted_messages = convert_openai_messages(messages) if not stream: result = await model_config.ainvoke(converted_messages) return ChatCompletions( choices=[Choice(message=convert_message_to_dict(result))] ) else: return ( ChatCompletionChunk( choices=[ChoiceChunk(delta=_convert_message_chunk(c, i))] ) async for i, c in aenumerate(model_config.astream(converted_messages)) )
[docs] class Chat: """Chat."""
[docs] def __init__(self) -> None: self.completions = Completions()
chat = Chat()