Source code for langchain_community.agent_toolkits.sql.toolkit

"""Toolkit for interacting with an SQL database."""

from typing import List

from langchain_core.caches import BaseCache as BaseCache
from langchain_core.callbacks import Callbacks as Callbacks
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool
from langchain_core.tools.base import BaseToolkit
from pydantic import ConfigDict, Field

from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase


[docs] class SQLDatabaseToolkit(BaseToolkit): """SQLDatabaseToolkit for interacting with SQL databases. Setup: Install ``langchain-community``. .. code-block:: bash pip install -U langchain-community Key init args: db: SQLDatabase The SQL database. llm: BaseLanguageModel The language model (for use with QuerySQLCheckerTool) Instantiate: .. code-block:: python from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain_community.utilities.sql_database import SQLDatabase from langchain_openai import ChatOpenAI db = SQLDatabase.from_uri("sqlite:///Chinook.db") llm = ChatOpenAI(temperature=0) toolkit = SQLDatabaseToolkit(db=db, llm=llm) Tools: .. code-block:: python toolkit.get_tools() Use within an agent: .. code-block:: python from langchain import hub from langgraph.prebuilt import create_react_agent # Pull prompt (or define your own) prompt_template = hub.pull("langchain-ai/sql-agent-system-prompt") system_message = prompt_template.format(dialect="SQLite", top_k=5) # Create agent agent_executor = create_react_agent( llm, toolkit.get_tools(), state_modifier=system_message ) # Query agent example_query = "Which country's customers spent the most?" events = agent_executor.stream( {"messages": [("user", example_query)]}, stream_mode="values", ) for event in events: event["messages"][-1].pretty_print() """ # noqa: E501 db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of SQL dialect to use.""" return self.db.dialect model_config = ConfigDict( arbitrary_types_allowed=True, )
[docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" list_sql_database_tool = ListSQLDatabaseTool(db=self.db) info_sql_database_tool_description = ( "Input to this tool is a comma-separated list of tables, output is the " "schema and sample rows for those tables. " "Be sure that the tables actually exist by calling " f"{list_sql_database_tool.name} first! " "Example Input: table1, table2, table3" ) info_sql_database_tool = InfoSQLDatabaseTool( db=self.db, description=info_sql_database_tool_description ) query_sql_database_tool_description = ( "Input to this tool is a detailed and correct SQL query, output is a " "result from the database. If the query is not correct, an error message " "will be returned. If an error is returned, rewrite the query, check the " "query, and try again. If you encounter an issue with Unknown column " f"'xxxx' in 'field list', use {info_sql_database_tool.name} " "to query the correct table fields." ) query_sql_database_tool = QuerySQLDataBaseTool( db=self.db, description=query_sql_database_tool_description ) query_sql_checker_tool_description = ( "Use this tool to double check if your query is correct before executing " "it. Always use this tool before executing a query with " f"{query_sql_database_tool.name}!" ) query_sql_checker_tool = QuerySQLCheckerTool( db=self.db, llm=self.llm, description=query_sql_checker_tool_description ) return [ query_sql_database_tool, info_sql_database_tool, list_sql_database_tool, query_sql_checker_tool, ]
[docs] def get_context(self) -> dict: """Return db context that you may want in agent prompt.""" return self.db.get_context()
SQLDatabaseToolkit.model_rebuild()