import os
import warnings
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from uuid import UUID
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage, ChatMessage
from langchain_core.outputs import Generation, LLMResult
[docs]
class LabelStudioMode(Enum):
"""Label Studio mode enumerator."""
PROMPT = "prompt"
CHAT = "chat"
[docs]
def get_default_label_configs(
mode: Union[str, LabelStudioMode],
) -> Tuple[str, LabelStudioMode]:
"""Get default Label Studio configs for the given mode.
Parameters:
mode: Label Studio mode ("prompt" or "chat")
Returns: Tuple of Label Studio config and mode
"""
_default_label_configs = {
LabelStudioMode.PROMPT.value: """
<View>
<Style>
.prompt-box {
background-color: white;
border-radius: 10px;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
padding: 20px;
}
</Style>
<View className="root">
<View className="prompt-box">
<Text name="prompt" value="$prompt"/>
</View>
<TextArea name="response" toName="prompt"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>""",
LabelStudioMode.CHAT.value: """
<View>
<View className="root">
<Paragraphs name="dialogue"
value="$prompt"
layout="dialogue"
textKey="content"
nameKey="role"
granularity="sentence"/>
<Header value="Final response:"/>
<TextArea name="response" toName="dialogue"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>""",
}
if isinstance(mode, str):
mode = LabelStudioMode(mode)
return _default_label_configs[mode.value], mode
[docs]
class LabelStudioCallbackHandler(BaseCallbackHandler):
"""Label Studio callback handler.
Provides the ability to send predictions to Label Studio
for human evaluation, feedback and annotation.
Parameters:
api_key: Label Studio API key
url: Label Studio URL
project_id: Label Studio project ID
project_name: Label Studio project name
project_config: Label Studio project config (XML)
mode: Label Studio mode ("prompt" or "chat")
Examples:
>>> from langchain_community.llms import OpenAI
>>> from langchain_community.callbacks import LabelStudioCallbackHandler
>>> handler = LabelStudioCallbackHandler(
... api_key='<your_key_here>',
... url='http://localhost:8080',
... project_name='LangChain-%Y-%m-%d',
... mode='prompt'
... )
>>> llm = OpenAI(callbacks=[handler])
>>> llm.invoke('Tell me a story about a dog.')
"""
DEFAULT_PROJECT_NAME: str = "LangChain-%Y-%m-%d"
[docs]
def __init__(
self,
api_key: Optional[str] = None,
url: Optional[str] = None,
project_id: Optional[int] = None,
project_name: str = DEFAULT_PROJECT_NAME,
project_config: Optional[str] = None,
mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT,
):
super().__init__()
# Import LabelStudio SDK
try:
import label_studio_sdk as ls
except ImportError:
raise ImportError(
f"You're using {self.__class__.__name__} in your code,"
f" but you don't have the LabelStudio SDK "
f"Python package installed or upgraded to the latest version. "
f"Please run `pip install -U label-studio-sdk`"
f" before using this callback."
)
# Check if Label Studio API key is provided
if not api_key:
if os.getenv("LABEL_STUDIO_API_KEY"):
api_key = str(os.getenv("LABEL_STUDIO_API_KEY"))
else:
raise ValueError(
f"You're using {self.__class__.__name__} in your code,"
f" Label Studio API key is not provided. "
f"Please provide Label Studio API key: "
f"go to the Label Studio instance, navigate to "
f"Account & Settings -> Access Token and copy the key. "
f"Use the key as a parameter for the callback: "
f"{self.__class__.__name__}"
f"(label_studio_api_key='<your_key_here>', ...) or "
f"set the environment variable LABEL_STUDIO_API_KEY=<your_key_here>"
)
self.api_key = api_key
if not url:
if os.getenv("LABEL_STUDIO_URL"):
url = os.getenv("LABEL_STUDIO_URL")
else:
warnings.warn(
f"Label Studio URL is not provided, "
f"using default URL: {ls.LABEL_STUDIO_DEFAULT_URL}"
f"If you want to provide your own URL, use the parameter: "
f"{self.__class__.__name__}"
f"(label_studio_url='<your_url_here>', ...) "
f"or set the environment variable LABEL_STUDIO_URL=<your_url_here>"
)
url = ls.LABEL_STUDIO_DEFAULT_URL
self.url = url
# Maps run_id to prompts
self.payload: Dict[str, Dict] = {}
self.ls_client = ls.Client(url=self.url, api_key=self.api_key)
self.project_name = project_name
if project_config:
self.project_config = project_config
self.mode = None
else:
self.project_config, self.mode = get_default_label_configs(mode)
self.project_id = project_id or os.getenv("LABEL_STUDIO_PROJECT_ID")
if self.project_id is not None:
self.ls_project = self.ls_client.get_project(int(self.project_id))
else:
project_title = datetime.today().strftime(self.project_name)
existing_projects = self.ls_client.get_projects(title=project_title)
if existing_projects:
self.ls_project = existing_projects[0]
self.project_id = self.ls_project.id
else:
self.ls_project = self.ls_client.create_project(
title=project_title, label_config=self.project_config
)
self.project_id = self.ls_project.id
self.parsed_label_config = self.ls_project.parsed_label_config
# Find the first TextArea tag
# "from_name", "to_name", "value" will be used to create predictions
self.from_name, self.to_name, self.value, self.input_type = (
None,
None,
None,
None,
)
for tag_name, tag_info in self.parsed_label_config.items():
if tag_info["type"] == "TextArea":
self.from_name = tag_name
self.to_name = tag_info["to_name"][0]
self.value = tag_info["inputs"][0]["value"]
self.input_type = tag_info["inputs"][0]["type"]
break
if not self.from_name:
error_message = (
f'Label Studio project "{self.project_name}" '
f"does not have a TextArea tag. "
f"Please add a TextArea tag to the project."
)
if self.mode == LabelStudioMode.PROMPT:
error_message += (
"\nHINT: go to project Settings -> "
"Labeling Interface -> Browse Templates"
' and select "Generative AI -> '
'Supervised Language Model Fine-tuning" template.'
)
else:
error_message += (
"\nHINT: go to project Settings -> "
"Labeling Interface -> Browse Templates"
" and check available templates under "
'"Generative AI" section.'
)
raise ValueError(error_message)
[docs]
def add_prompts_generations(
self, run_id: str, generations: List[List[Generation]]
) -> None:
# Create tasks in Label Studio
tasks = []
prompts = self.payload[run_id]["prompts"]
model_version = (
self.payload[run_id]["kwargs"]
.get("invocation_params", {})
.get("model_name")
)
for prompt, generation in zip(prompts, generations):
tasks.append(
{
"data": {
self.value: prompt,
"run_id": run_id,
},
"predictions": [
{
"result": [
{
"from_name": self.from_name,
"to_name": self.to_name,
"type": "textarea",
"value": {"text": [g.text for g in generation]},
}
],
"model_version": model_version,
}
],
}
)
self.ls_project.import_tasks(tasks)
[docs]
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> None:
"""Save the prompts in memory when an LLM starts."""
if self.input_type != "Text":
raise ValueError(
f'\nLabel Studio project "{self.project_name}" '
f"has an input type <{self.input_type}>. "
f'To make it work with the mode="chat", '
f"the input type should be <Text>.\n"
f"Read more here https://labelstud.io/tags/text"
)
run_id = str(kwargs["run_id"])
self.payload[run_id] = {"prompts": prompts, "kwargs": kwargs}
def _get_message_role(self, message: BaseMessage) -> str:
"""Get the role of the message."""
if isinstance(message, ChatMessage):
return message.role
else:
return message.__class__.__name__
[docs]
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Save the prompts in memory when an LLM starts."""
if self.input_type != "Paragraphs":
raise ValueError(
f'\nLabel Studio project "{self.project_name}" '
f"has an input type <{self.input_type}>. "
f'To make it work with the mode="chat", '
f"the input type should be <Paragraphs>.\n"
f"Read more here https://labelstud.io/tags/paragraphs"
)
prompts = []
for message_list in messages:
dialog = []
for message in message_list:
dialog.append(
{
"role": self._get_message_role(message),
"content": message.content,
}
)
prompts.append(dialog)
self.payload[str(run_id)] = {
"prompts": prompts,
"tags": tags,
"metadata": metadata,
"run_id": run_id,
"parent_run_id": parent_run_id,
"kwargs": kwargs,
}
[docs]
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing when a new token is generated."""
pass
[docs]
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Create a new Label Studio task for each prompt and generation."""
run_id = str(kwargs["run_id"])
# Submit results to Label Studio
self.add_prompts_generations(run_id, response.generations)
# Pop current run from `self.runs`
self.payload.pop(run_id)
[docs]
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when LLM outputs an error."""
pass
[docs]
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
[docs]
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
[docs]
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when LLM chain outputs an error."""
pass
[docs]
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
pass
[docs]
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing"""
pass
[docs]
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing"""
pass