Source code for langchain_community.callbacks.trubrics_callback

import os
from typing import Any, Dict, List, Optional
from uuid import UUID

from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    FunctionMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import LLMResult


def _convert_message_to_dict(message: BaseMessage) -> dict:
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


[docs] class TrubricsCallbackHandler(BaseCallbackHandler): """ Callback handler for Trubrics. Args: project: a trubrics project, default project is "default" email: a trubrics account email, can equally be set in env variables password: a trubrics account password, can equally be set in env variables **kwargs: all other kwargs are parsed and set to trubrics prompt variables, or added to the `metadata` dict """
[docs] def __init__( self, project: str = "default", email: Optional[str] = None, password: Optional[str] = None, **kwargs: Any, ) -> None: super().__init__() try: from trubrics import Trubrics except ImportError: raise ImportError( "The TrubricsCallbackHandler requires installation of " "the trubrics package. " "Please install it with `pip install trubrics`." ) self.trubrics = Trubrics( project=project, email=email or os.environ["TRUBRICS_EMAIL"], password=password or os.environ["TRUBRICS_PASSWORD"], ) self.config_model: dict = {} self.prompt: Optional[str] = None self.messages: Optional[list] = None self.trubrics_kwargs: Optional[dict] = kwargs if kwargs else None
[docs] def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: self.prompt = prompts[0]
[docs] def on_chat_model_start( self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any, ) -> None: self.messages = [_convert_message_to_dict(message) for message in messages[0]] self.prompt = self.messages[-1]["content"]
[docs] def on_llm_end(self, response: LLMResult, run_id: UUID, **kwargs: Any) -> None: tags = ["langchain"] user_id = None session_id = None metadata: dict = {"langchain_run_id": run_id} if self.messages: metadata["messages"] = self.messages if self.trubrics_kwargs: if self.trubrics_kwargs.get("tags"): tags.append(*self.trubrics_kwargs.pop("tags")) user_id = self.trubrics_kwargs.pop("user_id", None) session_id = self.trubrics_kwargs.pop("session_id", None) metadata.update(self.trubrics_kwargs) for generation in response.generations: self.trubrics.log_prompt( config_model={ "model": response.llm_output.get("model_name") if response.llm_output else "NA" }, prompt=self.prompt, generation=generation[0].text, user_id=user_id, session_id=session_id, tags=tags, metadata=metadata, )