[docs]@deprecated(since="0.3.3",removal="1.0",alternative_import="databricks_langchain.ChatDatabricks",)classChatDatabricks(ChatMlflow):"""`Databricks` chat models API. To use, you should have the ``mlflow`` python package installed. For more information, see https://mlflow.org/docs/latest/llms/deployments. Example: .. code-block:: python from langchain_community.chat_models import ChatDatabricks chat_model = ChatDatabricks( target_uri="databricks", endpoint="databricks-llama-2-70b-chat", temperature=0.1, ) # single input invocation print(chat_model.invoke("What is MLflow?").content) # single input invocation with streaming response for chunk in chat_model.stream("What is MLflow?"): print(chunk.content, end="|") """target_uri:str="databricks""""The target URI to use. Defaults to ``databricks``."""@propertydef_llm_type(self)->str:"""Return type of chat model."""return"databricks-chat"@propertydef_mlflow_extras(self)->str:return""def_validate_uri(self)->None:ifself.target_uri=="databricks":returnifurlparse(self.target_uri).scheme!="databricks":raiseValueError("Invalid target URI. The target URI must be a valid databricks URI.")