"""Wrapper around LiteLLM's model I/O library."""
from __future__ import annotations
import json
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
FunctionMessage,
FunctionMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
ToolCall,
ToolCallChunk,
ToolMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env, pre_init
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel, Field
logger = logging.getLogger(__name__)
[docs]
class ChatLiteLLMException(Exception):
"""Error with the `LiteLLM I/O` library"""
def _create_retry_decorator(
llm: ChatLiteLLM,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
import litellm
errors = [
litellm.Timeout,
litellm.APIError,
litellm.APIConnectionError,
litellm.RateLimitError,
]
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
# Fix for azure
# Also OpenAI returns None for tool invocations
content = _dict.get("content", "") or ""
additional_kwargs = {}
if _dict.get("function_call"):
additional_kwargs["function_call"] = dict(_dict["function_call"])
if _dict.get("tool_calls"):
additional_kwargs["tool_calls"] = _dict["tool_calls"]
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=_dict["content"])
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
else:
return ChatMessage(content=_dict["content"], role=role)
[docs]
async def acompletion_with_retry(
llm: ChatLiteLLM,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
role = _dict.get("role")
content = _dict.get("content") or ""
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
else:
additional_kwargs = {}
tool_call_chunks = []
if raw_tool_calls := _dict.get("tool_calls"):
additional_kwargs["tool_calls"] = raw_tool_calls
try:
tool_call_chunks = [
ToolCallChunk(
name=rtc["function"].get("name"),
args=rtc["function"].get("arguments"),
id=rtc.get("id"),
index=rtc["index"],
)
for rtc in raw_tool_calls
]
except KeyError:
pass
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_call_chunks,
)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role == "function" or default_class == FunctionMessageChunk:
return FunctionMessageChunk(content=content, name=_dict["name"])
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
else:
return default_class(content=content) # type: ignore[call-arg]
def _lc_tool_call_to_openai_tool_call(tool_call: ToolCall) -> dict:
return {
"type": "function",
"id": tool_call["id"],
"function": {
"name": tool_call["name"],
"arguments": json.dumps(tool_call["args"]),
},
}
def _convert_message_to_dict(message: BaseMessage) -> dict:
message_dict: Dict[str, Any] = {"content": message.content}
if isinstance(message, ChatMessage):
message_dict["role"] = message.role
elif isinstance(message, HumanMessage):
message_dict["role"] = "user"
elif isinstance(message, AIMessage):
message_dict["role"] = "assistant"
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
if message.tool_calls:
message_dict["tool_calls"] = [
_lc_tool_call_to_openai_tool_call(tc) for tc in message.tool_calls
]
elif "tool_calls" in message.additional_kwargs:
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
elif isinstance(message, SystemMessage):
message_dict["role"] = "system"
elif isinstance(message, FunctionMessage):
message_dict["role"] = "function"
message_dict["name"] = message.name
elif isinstance(message, ToolMessage):
message_dict["role"] = "tool"
message_dict["tool_call_id"] = message.tool_call_id
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
[docs]
class ChatLiteLLM(BaseChatModel):
"""Chat model that uses the LiteLLM API."""
client: Any = None #: :meta private:
model: str = "gpt-3.5-turbo"
model_name: Optional[str] = None
"""Model name to use."""
openai_api_key: Optional[str] = None
azure_api_key: Optional[str] = None
anthropic_api_key: Optional[str] = None
replicate_api_key: Optional[str] = None
cohere_api_key: Optional[str] = None
openrouter_api_key: Optional[str] = None
streaming: bool = False
api_base: Optional[str] = None
organization: Optional[str] = None
custom_llm_provider: Optional[str] = None
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
temperature: Optional[float] = 1
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Run inference with this temperature. Must be in the closed
interval [0.0, 1.0]."""
top_p: Optional[float] = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: Optional[int] = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
max_tokens: Optional[int] = None
max_retries: int = 6
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
set_model_value = self.model
if self.model_name is not None:
set_model_value = self.model_name
return {
"model": set_model_value,
"force_timeout": self.request_timeout,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
"temperature": self.temperature,
"custom_llm_provider": self.custom_llm_provider,
**self.model_kwargs,
}
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the openai client."""
set_model_value = self.model
if self.model_name is not None:
set_model_value = self.model_name
self.client.api_base = self.api_base
self.client.organization = self.organization
creds: Dict[str, Any] = {
"model": set_model_value,
"force_timeout": self.request_timeout,
"api_base": self.api_base,
}
return {**self._default_params, **creds}
[docs]
def completion_with_retry(
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
return self.client.completion(**kwargs)
return _completion_with_retry(**kwargs)
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists, temperature, top_p, and top_k."""
try:
import litellm
except ImportError:
raise ChatLiteLLMException(
"Could not import litellm python package. "
"Please install it with `pip install litellm`"
)
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY", default=""
)
values["azure_api_key"] = get_from_dict_or_env(
values, "azure_api_key", "AZURE_API_KEY", default=""
)
values["anthropic_api_key"] = get_from_dict_or_env(
values, "anthropic_api_key", "ANTHROPIC_API_KEY", default=""
)
values["replicate_api_key"] = get_from_dict_or_env(
values, "replicate_api_key", "REPLICATE_API_KEY", default=""
)
values["openrouter_api_key"] = get_from_dict_or_env(
values, "openrouter_api_key", "OPENROUTER_API_KEY", default=""
)
values["cohere_api_key"] = get_from_dict_or_env(
values, "cohere_api_key", "COHERE_API_KEY", default=""
)
values["huggingface_api_key"] = get_from_dict_or_env(
values, "huggingface_api_key", "HUGGINGFACE_API_KEY", default=""
)
values["together_ai_api_key"] = get_from_dict_or_env(
values, "together_ai_api_key", "TOGETHERAI_API_KEY", default=""
)
values["client"] = litellm
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
return values
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.get("finish_reason")),
)
generations.append(gen)
token_usage = response.get("usage", {})
set_model_value = self.model
if self.model_name is not None:
set_model_value = self.model_name
llm_output = {"token_usage": token_usage, "model": set_model_value}
return ChatResult(generations=generations, llm_output=llm_output)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = self._client_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class = AIMessageChunk
for chunk in self.completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.model_dump()
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
yield cg_chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class = AIMessageChunk
async for chunk in await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
):
if not isinstance(chunk, dict):
chunk = chunk.model_dump()
if len(chunk["choices"]) == 0:
continue
delta = chunk["choices"][0]["delta"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
default_chunk_class = chunk.__class__
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
yield cg_chunk
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> ChatResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
stream_iter = self._astream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = await acompletion_with_retry(
self, messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
set_model_value = self.model
if self.model_name is not None:
set_model_value = self.model_name
return {
"model": set_model_value,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"n": self.n,
}
@property
def _llm_type(self) -> str:
return "litellm-chat"