import logging
from typing import (
Any,
AsyncContextManager,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Optional,
Tuple,
Type,
Union,
cast,
)
import httpx
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
from langchain_core.language_models.llms import create_base_retry_decorator
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.utils import convert_to_secret_str, get_from_env
from pydantic import AliasChoices, Field, SecretStr, model_validator
from typing_extensions import Self
_DEFAULT_BASE_URL = "https://clovastudio.stream.ntruss.com"
logger = logging.getLogger(__name__)
def _convert_chunk_to_message_chunk(
sse: Any, default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
sse_data = sse.json()
message = sse_data.get("message")
role = message.get("role")
content = message.get("content") or ""
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=content)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
elif role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=content, role=role)
else:
return default_class(content=content) # type: ignore[call-arg]
def _convert_message_to_naver_chat_message(
message: BaseMessage,
) -> Dict:
if isinstance(message, ChatMessage):
return dict(role=message.role, content=message.content)
elif isinstance(message, HumanMessage):
return dict(role="user", content=message.content)
elif isinstance(message, SystemMessage):
return dict(role="system", content=message.content)
elif isinstance(message, AIMessage):
return dict(role="assistant", content=message.content)
else:
logger.warning(
"FunctionMessage, ToolMessage not yet supported "
"(https://api.ncloud-docs.com/docs/clovastudio-chatcompletions)"
)
raise ValueError(f"Got unknown type {message}")
def _convert_naver_chat_message_to_message(
_message: Dict,
) -> BaseMessage:
role = _message["role"]
assert role in (
"assistant",
"system",
"user",
), f"Expected role to be 'assistant', 'system', 'user', got {role}"
content = cast(str, _message["content"])
additional_kwargs: Dict = {}
if role == "user":
return HumanMessage(
content=content,
additional_kwargs=additional_kwargs,
)
elif role == "system":
return SystemMessage(
content=content,
additional_kwargs=additional_kwargs,
)
elif role == "assistant":
return AIMessage(
content=content,
additional_kwargs=additional_kwargs,
)
else:
logger.warning("Got unknown role %s", role)
raise ValueError(f"Got unknown role {role}")
async def _aiter_sse(
event_source_mgr: AsyncContextManager[Any],
) -> AsyncIterator[Dict]:
"""Iterate over the server-sent events."""
async with event_source_mgr as event_source:
await _araise_on_error(event_source.response)
async for sse in event_source.aiter_sse():
event_data = sse.json()
if sse.event == "signal" and event_data.get("data", {}) == "[DONE]":
return
if sse.event == "result":
return
yield sse
def _raise_on_error(response: httpx.Response) -> None:
"""Raise an error if the response is an error."""
if httpx.codes.is_error(response.status_code):
error_message = response.read().decode("utf-8")
raise httpx.HTTPStatusError(
f"Error response {response.status_code} "
f"while fetching {response.url}: {error_message}",
request=response.request,
response=response,
)
async def _araise_on_error(response: httpx.Response) -> None:
"""Raise an error if the response is an error."""
if httpx.codes.is_error(response.status_code):
error_message = (await response.aread()).decode("utf-8")
raise httpx.HTTPStatusError(
f"Error response {response.status_code} "
f"while fetching {response.url}: {error_message}",
request=response.request,
response=response,
)
[docs]
class ChatClovaX(BaseChatModel):
"""`NCP ClovaStudio` Chat Completion API.
following environment variables set or passed in constructor in lower case:
- ``NCP_CLOVASTUDIO_API_KEY``
- ``NCP_APIGW_API_KEY``
Example:
.. code-block:: python
from langchain_core.messages import HumanMessage
from langchain_community import ChatClovaX
model = ChatClovaX()
model.invoke([HumanMessage(content="Come up with 10 names for a song about parrots.")])
""" # noqa: E501
client: httpx.Client = Field(default=None) #: :meta private:
async_client: httpx.AsyncClient = Field(default=None) #: :meta private:
model_name: str = Field(
default="HCX-003",
validation_alias=AliasChoices("model_name", "model"),
description="NCP ClovaStudio chat model name",
)
task_id: Optional[str] = Field(
default=None, description="NCP Clova Studio chat model tuning task ID"
)
service_app: bool = Field(
default=False,
description="false: use testapp, true: use service app on NCP Clova Studio",
)
ncp_clovastudio_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env are `NCP_CLOVASTUDIO_API_KEY` if not provided."""
ncp_apigw_api_key: Optional[SecretStr] = Field(default=None, alias="apigw_api_key")
"""Automatically inferred from env are `NCP_APIGW_API_KEY` if not provided."""
base_url: str = Field(default=None, alias="base_url")
"""
Automatically inferred from env are `NCP_CLOVASTUDIO_API_BASE_URL` if not provided.
"""
temperature: Optional[float] = Field(gt=0.0, le=1.0, default=0.5)
top_k: Optional[int] = Field(ge=0, le=128, default=0)
top_p: Optional[float] = Field(ge=0, le=1.0, default=0.8)
repeat_penalty: Optional[float] = Field(gt=0.0, le=10, default=5.0)
max_tokens: Optional[int] = Field(ge=0, le=4096, default=100)
stop_before: Optional[list[str]] = Field(default=None, alias="stop")
include_ai_filters: Optional[bool] = Field(default=False)
seed: Optional[int] = Field(ge=0, le=4294967295, default=0)
timeout: int = Field(gt=0, default=90)
max_retries: int = Field(ge=1, default=2)
[docs]
class Config:
"""Configuration for this pydantic object."""
populate_by_name = True
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the API."""
defaults = {
"temperature": self.temperature,
"topK": self.top_k,
"topP": self.top_p,
"repeatPenalty": self.repeat_penalty,
"maxTokens": self.max_tokens,
"stopBefore": self.stop_before,
"includeAiFilters": self.include_ai_filters,
"seed": self.seed,
}
filtered = {k: v for k, v in defaults.items() if v is not None}
return filtered
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
self._default_params["model_name"] = self.model_name
return self._default_params
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"ncp_clovastudio_api_key": "NCP_CLOVASTUDIO_API_KEY",
"ncp_apigw_api_key": "NCP_APIGW_API_KEY",
}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "chat-naver"
def _get_ls_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> LangSmithParams:
"""Get the parameters used to invoke the model."""
params = super()._get_ls_params(stop=stop, **kwargs)
params["ls_provider"] = "naver"
return params
@property
def _client_params(self) -> Dict[str, Any]:
"""Get the parameters used for the client."""
return self._default_params
@property
def _api_url(self) -> str:
"""GET chat completion api url"""
app_type = "serviceapp" if self.service_app else "testapp"
if self.task_id:
return (
f"{self.base_url}/{app_type}/v1/tasks/{self.task_id}/chat-completions"
)
else:
return f"{self.base_url}/{app_type}/v1/chat-completions/{self.model_name}"
@model_validator(mode="after")
def validate_model_after(self) -> Self:
if not (self.model_name or self.task_id):
raise ValueError("either model_name or task_id must be assigned a value.")
if not self.ncp_clovastudio_api_key:
self.ncp_clovastudio_api_key = convert_to_secret_str(
get_from_env("ncp_clovastudio_api_key", "NCP_CLOVASTUDIO_API_KEY")
)
if not self.ncp_apigw_api_key:
self.ncp_apigw_api_key = convert_to_secret_str(
get_from_env("ncp_apigw_api_key", "NCP_APIGW_API_KEY")
)
if not self.base_url:
self.base_url = get_from_env(
"base_url", "NCP_CLOVASTUDIO_API_BASE_URL", _DEFAULT_BASE_URL
)
if not self.client:
self.client = httpx.Client(
base_url=self.base_url,
headers=self.default_headers(),
timeout=self.timeout,
)
if not self.async_client:
self.async_client = httpx.AsyncClient(
base_url=self.base_url,
headers=self.default_headers(),
timeout=self.timeout,
)
return self
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict], Dict[str, Any]]:
params = self._client_params
if stop is not None and "stopBefore" in params:
params["stopBefore"] = stop
message_dicts = [_convert_message_to_naver_chat_message(m) for m in messages]
return message_dicts, params
def _completion_with_retry(self, **kwargs: Any) -> Any:
from httpx_sse import (
ServerSentEvent,
SSEError,
connect_sse,
)
if "stream" not in kwargs:
kwargs["stream"] = False
stream = kwargs["stream"]
if stream:
def iter_sse() -> Iterator[ServerSentEvent]:
with connect_sse(
self.client, "POST", self._api_url, json=kwargs
) as event_source:
_raise_on_error(event_source.response)
for sse in event_source.iter_sse():
event_data = sse.json()
if (
sse.event == "signal"
and event_data.get("data", {}) == "[DONE]"
):
return
if sse.event == "result":
return
if sse.event == "error":
raise SSEError(message=sse.data)
yield sse
return iter_sse()
else:
response = self.client.post(url=self._api_url, json=kwargs)
_raise_on_error(response)
return response.json()
async def _acompletion_with_retry(
self,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
from httpx_sse import aconnect_sse
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
if "stream" not in kwargs:
kwargs["stream"] = False
stream = kwargs["stream"]
if stream:
event_source = aconnect_sse(
self.async_client, "POST", self._api_url, json=kwargs
)
return _aiter_sse(event_source)
else:
response = await self.async_client.post(url=self._api_url, json=kwargs)
await _araise_on_error(response)
return response.json()
return await _completion_with_retry(**kwargs)
def _create_chat_result(self, response: Dict) -> ChatResult:
generations = []
result = response.get("result", {})
msg = result.get("message", {})
message = _convert_naver_chat_message_to_message(msg)
if isinstance(message, AIMessage):
message.usage_metadata = {
"input_tokens": result.get("inputLength"),
"output_tokens": result.get("outputLength"),
"total_tokens": result.get("inputLength") + result.get("outputLength"),
}
gen = ChatGeneration(
message=message,
)
generations.append(gen)
llm_output = {
"stop_reason": result.get("stopReason"),
"input_length": result.get("inputLength"),
"output_length": result.get("outputLength"),
"seed": result.get("seed"),
"ai_filter": result.get("aiFilter"),
}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = self._completion_with_retry(messages=message_dicts, **params)
return self._create_chat_result(response)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
for sse in self._completion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
new_chunk = _convert_chunk_to_message_chunk(sse, default_chunk_class)
default_chunk_class = new_chunk.__class__
gen_chunk = ChatGenerationChunk(message=new_chunk)
if run_manager:
run_manager.on_llm_new_token(
token=cast(str, new_chunk.content), chunk=gen_chunk
)
yield gen_chunk
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs}
response = await self._acompletion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
)
return self._create_chat_result(response)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
async for chunk in await self._acompletion_with_retry(
messages=message_dicts, run_manager=run_manager, **params
):
new_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
default_chunk_class = new_chunk.__class__
gen_chunk = ChatGenerationChunk(message=new_chunk)
if run_manager:
await run_manager.on_llm_new_token(
token=cast(str, new_chunk.content), chunk=gen_chunk
)
yield gen_chunk
def _create_retry_decorator(
llm: ChatClovaX,
run_manager: Optional[
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
] = None,
) -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle exceptions"""
errors = [httpx.RequestError, httpx.StreamError]
return create_base_retry_decorator(
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
)