"""Writer chat wrapper."""
from __future__ import annotations
import json
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable
from langchain_core.utils import get_from_dict_or_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
logger = logging.getLogger(__name__)
[docs]
class ChatWriter(BaseChatModel):
"""Writer chat model.
To use, you should have the ``writer-sdk`` Python package installed, and the
environment variable ``WRITER_API_KEY`` set with your API key or pass 'api_key'
init param.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatWriter
chat = ChatWriter(
api_key="your key"
model="palmyra-x-004"
)
"""
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
api_key: Optional[SecretStr] = Field(default=None)
"""Writer API key."""
model_name: str = Field(default="palmyra-x-004", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
model_config = ConfigDict(populate_by_name=True)
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "writer-chat"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"temperature": self.temperature,
**self.model_kwargs,
}
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Writer API."""
return {
"model": self.model_name,
"temperature": self.temperature,
"n": self.n,
"max_tokens": self.max_tokens,
**self.model_kwargs,
}
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validates that api key is passed and creates Writer clients."""
try:
from writerai import AsyncClient, Client
except ImportError as e:
raise ImportError(
"Could not import writerai python package. "
"Please install it with `pip install writerai`."
) from e
if not values.get("client"):
values.update(
{
"client": Client(
api_key=get_from_dict_or_env(
values, "api_key", "WRITER_API_KEY"
)
)
}
)
if not values.get("async_client"):
values.update(
{
"async_client": AsyncClient(
api_key=get_from_dict_or_env(
values, "api_key", "WRITER_API_KEY"
)
)
}
)
if not (
type(values.get("client")) is Client
and type(values.get("async_client")) is AsyncClient
):
raise ValueError(
"'client' attribute must be with type 'Client' and "
"'async_client' must be with type 'AsyncClient' from 'writerai' package"
)
return values
def _create_chat_result(self, response: Any) -> ChatResult:
generations = []
for choice in response.choices:
message = self._convert_writer_to_langchain(choice.message)
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=choice.finish_reason),
)
generations.append(gen)
token_usage = {}
if response.usage:
token_usage = response.usage.__dict__
llm_output = {
"token_usage": token_usage,
"model_name": self.model_name,
"system_fingerprint": response.system_fingerprint,
}
return ChatResult(generations=generations, llm_output=llm_output)
@staticmethod
def _convert_langchain_to_writer(message: BaseMessage) -> dict:
"""Convert a LangChain message to a Writer message dict."""
message_dict = {"role": "", "content": message.content}
if isinstance(message, ChatMessage):
message_dict["role"] = message.role
elif isinstance(message, HumanMessage):
message_dict["role"] = "user"
elif isinstance(message, AIMessage):
message_dict["role"] = "assistant"
if message.tool_calls:
message_dict["tool_calls"] = [
{
"id": tool["id"],
"type": "function",
"function": {"name": tool["name"], "arguments": tool["args"]},
}
for tool in message.tool_calls
]
elif isinstance(message, SystemMessage):
message_dict["role"] = "system"
elif isinstance(message, ToolMessage):
message_dict["role"] = "tool"
message_dict["tool_call_id"] = message.tool_call_id
else:
raise ValueError(f"Got unknown message type: {type(message)}")
if message.name:
message_dict["name"] = message.name
return message_dict
@staticmethod
def _convert_writer_to_langchain(response_message: Any) -> BaseMessage:
"""Convert a Writer message to a LangChain message."""
if not isinstance(response_message, dict):
response_message = json.loads(
json.dumps(response_message, default=lambda o: o.__dict__)
)
role = response_message.get("role", "")
content = response_message.get("content")
if not content:
content = ""
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
additional_kwargs = {}
if tool_calls := response_message.get("tool_calls", []):
additional_kwargs["tool_calls"] = tool_calls
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=content)
elif role == "tool":
return ToolMessage(
content=content,
tool_call_id=response_message.get("tool_call_id", ""),
name=response_message.get("name", ""),
)
else:
return ChatMessage(content=content, role=role)
def _convert_messages_to_writer(
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
"""Convert a list of LangChain messages to List of Writer dicts."""
params = {
"model": self.model_name,
"temperature": self.temperature,
"n": self.n,
**self.model_kwargs,
}
if stop:
params["stop"] = stop
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
message_dicts = [self._convert_langchain_to_writer(m) for m in messages]
return message_dicts, params
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._convert_messages_to_writer(messages, stop)
params = {**params, **kwargs, "stream": True}
response = self.client.chat.chat(messages=message_dicts, **params)
for chunk in response:
delta = chunk.choices[0].delta
if not delta or not delta.content:
continue
chunk = self._convert_writer_to_langchain(
{"role": "assistant", "content": delta.content}
)
chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts, params = self._convert_messages_to_writer(messages, stop)
params = {**params, **kwargs, "stream": True}
response = await self.async_client.chat.chat(messages=message_dicts, **params)
async for chunk in response:
delta = chunk.choices[0].delta
if not delta or not delta.content:
continue
chunk = self._convert_writer_to_langchain(
{"role": "assistant", "content": delta.content}
)
chunk = ChatGenerationChunk(message=chunk)
if run_manager:
await run_manager.on_llm_new_token(chunk.text)
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._convert_messages_to_writer(messages, stop)
params = {**params, **kwargs}
response = self.client.chat.chat(messages=message_dicts, **params)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._convert_messages_to_writer(messages, stop)
params = {**params, **kwargs}
response = await self.async_client.chat.chat(messages=message_dicts, **params)
return self._create_chat_result(response)