Source code for langchain_community.cross_encoders.huggingface
from typing import Any, Dict, List, Tuple
from pydantic import BaseModel, ConfigDict, Field
from langchain_community.cross_encoders.base import BaseCrossEncoder
DEFAULT_MODEL_NAME = "BAAI/bge-reranker-base"
[docs]
class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder):
"""HuggingFace cross encoder models.
Example:
.. code-block:: python
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
model_name = "BAAI/bge-reranker-base"
model_kwargs = {'device': 'cpu'}
hf = HuggingFaceCrossEncoder(
model_name=model_name,
model_kwargs=model_kwargs
)
"""
client: Any = None #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.CrossEncoder(
self.model_name, **self.model_kwargs
)
model_config = ConfigDict(extra="forbid", protected_namespaces=())
[docs]
def score(self, text_pairs: List[Tuple[str, str]]) -> List[float]:
"""Compute similarity scores using a HuggingFace transformer model.
Args:
text_pairs: The list of text text_pairs to score the similarity.
Returns:
List of scores, one for each pair.
"""
scores = self.client.predict(text_pairs)
# Some models e.g bert-multilingual-passage-reranking-msmarco
# gives two score not_relevant and relevant as compare with the query.
if len(scores.shape) > 1: # we are going to get the relevant scores
scores = map(lambda x: x[1], scores)
return scores