Source code for langchain_community.document_compressors.openvino_rerank

from pathlib import Path
from typing import Any, Dict, Optional, Sequence

import numpy as np
from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.documents.compressor import BaseDocumentCompressor
from pydantic import Field


[docs] class RerankRequest: """Request for reranking."""
[docs] def __init__(self, query: Any = None, passages: Any = None): self.query = query self.passages = passages if passages is not None else []
[docs] class OpenVINOReranker(BaseDocumentCompressor): """ OpenVINO rerank models. """ ov_model: Any = None """OpenVINO model object.""" tokenizer: Any = None """Tokenizer for embedding model.""" model_name_or_path: str """HuggingFace model id.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments passed to the model.""" top_n: int = 4 """return Top n texts.""" def __init__(self, **kwargs: Any): super().__init__(**kwargs) try: from optimum.intel.openvino import OVModelForSequenceClassification except ImportError as e: raise ImportError( "Could not import optimum-intel python package. " "Please install it with: " "pip install -U 'optimum[openvino,nncf]'" ) from e try: from huggingface_hub import HfApi except ImportError as e: raise ImportError( "Could not import huggingface_hub python package. " "Please install it with: " "`pip install -U huggingface_hub`." ) from e def require_model_export( model_id: str, revision: Any = None, subfolder: Any = None ) -> bool: model_dir = Path(model_id) if subfolder is not None: model_dir = model_dir / subfolder if model_dir.is_dir(): return ( not (model_dir / "openvino_model.xml").exists() or not (model_dir / "openvino_model.bin").exists() ) hf_api = HfApi() try: model_info = hf_api.model_info(model_id, revision=revision or "main") normalized_subfolder = ( None if subfolder is None else Path(subfolder).as_posix() ) model_files = [ file.rfilename for file in model_info.siblings if normalized_subfolder is None or file.rfilename.startswith(normalized_subfolder) ] ov_model_path = ( "openvino_model.xml" if subfolder is None else f"{normalized_subfolder}/openvino_model.xml" ) return ( ov_model_path not in model_files or ov_model_path.replace(".xml", ".bin") not in model_files ) except Exception: return True if require_model_export(self.model_name_or_path): # use remote model self.ov_model = OVModelForSequenceClassification.from_pretrained( self.model_name_or_path, export=True, **self.model_kwargs ) else: # use local model self.ov_model = OVModelForSequenceClassification.from_pretrained( self.model_name_or_path, **self.model_kwargs ) try: from transformers import AutoTokenizer except ImportError as e: raise ImportError( "Unable to import transformers, please install with " "`pip install -U transformers`." ) from e self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
[docs] def rerank(self, request: Any) -> Any: query = request.query passages = request.passages query_passage_pairs = [[query, passage["text"]] for passage in passages] length = self.ov_model.request.inputs[0].get_partial_shape()[1] if length.is_dynamic: input_tensors = self.tokenizer( query_passage_pairs, padding=True, truncation=True, return_tensors="pt" ) else: input_tensors = self.tokenizer( query_passage_pairs, padding="max_length", max_length=length.get_length(), truncation=True, return_tensors="pt", ) outputs = self.ov_model(**input_tensors, return_dict=True) if outputs[0].shape[1] > 1: scores = outputs[0][:, 1] else: scores = outputs[0].flatten() scores = list(1 / (1 + np.exp(-scores))) # Combine scores with passages, including metadata for score, passage in zip(scores, passages): passage["score"] = score # Sort passages based on scores passages.sort(key=lambda x: x["score"], reverse=True) return passages
[docs] def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: passages = [ {"id": i, "text": doc.page_content} for i, doc in enumerate(documents) ] rerank_request = RerankRequest(query=query, passages=passages) rerank_response = self.rerank(rerank_request)[: self.top_n] final_results = [] for r in rerank_response: doc = Document( page_content=r["text"], metadata={"id": r["id"], "relevance_score": r["score"]}, ) final_results.append(doc) return final_results
[docs] def save_model( self, model_path: str, ) -> bool: self.ov_model.half() self.ov_model.save_pretrained(model_path) self.tokenizer.save_pretrained(model_path) return True