[docs]classVolcengineRerank(BaseDocumentCompressor):"""Document compressor that uses `Volcengine Rerank API`."""client:Any=None"""Volcengine client to use for compressing documents."""ak:Optional[str]=None"""Access Key ID. https://www.volcengine.com/docs/84313/1254553"""sk:Optional[str]=None"""Secret Access Key. https://www.volcengine.com/docs/84313/1254553"""region:str="api-vikingdb.volces.com""""https://www.volcengine.com/docs/84313/1254488. """host:str="cn-beijing""""https://www.volcengine.com/docs/84313/1254488. """top_n:Optional[int]=3"""Number of documents to return."""model_config=ConfigDict(populate_by_name=True,arbitrary_types_allowed=True,extra="forbid",)@model_validator(mode="before")@classmethoddefvalidate_environment(cls,values:Dict)->Any:"""Validate that api key and python package exists in environment."""ifnotvalues.get("client"):try:fromvolcengine.viking_dbimportVikingDBServiceexceptImportError:raiseImportError("Could not import volcengine python package. ""Please install it with `pip install volcengine` ""or `pip install --user volcengine`.")values["ak"]=get_from_dict_or_env(values,"ak","VOLC_API_AK")values["sk"]=get_from_dict_or_env(values,"sk","VOLC_API_SK")values["client"]=VikingDBService(host="api-vikingdb.volces.com",region="cn-beijing",scheme="https",connection_timeout=30,socket_timeout=30,ak=values["ak"],sk=values["sk"],)returnvalues
[docs]defrerank(self,documents:Sequence[Union[str,Document,dict]],query:str,*,top_n:Optional[int]=-1,)->List[Dict[str,Any]]:"""Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. """# noqa: E501iflen(documents)==0:# to avoid empty api callreturn[]docs=[{"query":query,"content":doc.page_contentifisinstance(doc,Document)elsedoc,}fordocindocuments]fromvolcengine.viking_dbimportVikingDBServiceclient:VikingDBService=self.clientresults=client.batch_rerank(docs)result_dicts=[]forindex,scoreinenumerate(results):result_dicts.append({"index":index,"relevance_score":score})result_dicts.sort(key=lambdax:x["relevance_score"],reverse=True)top_n=top_nif(top_nisNoneortop_n>0)elseself.top_nreturnresult_dicts[:top_n]
[docs]defcompress_documents(self,documents:Sequence[Document],query:str,callbacks:Optional[Callbacks]=None,)->Sequence[Document]:""" Compress documents using Volcengine's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """compressed=[]forresinself.rerank(documents,query):doc=documents[res["index"]]doc_copy=Document(doc.page_content,metadata=deepcopy(doc.metadata))doc_copy.metadata["relevance_score"]=res["relevance_score"]compressed.append(doc_copy)returncompressed