"""Azure OpenAI embeddings wrapper."""
from __future__ import annotations
import os
import warnings
from typing import Any, Awaitable, Callable, Dict, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.utils import get_from_dict_or_env
from pydantic import Field, model_validator
from typing_extensions import Self
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.utils.openai import is_openai_v1
[docs]
@deprecated(
since="0.0.9",
removal="1.0",
alternative_import="langchain_openai.AzureOpenAIEmbeddings",
)
class AzureOpenAIEmbeddings(OpenAIEmbeddings): # type: ignore[override]
"""`Azure OpenAI` Embeddings API."""
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment: Optional[str] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Union[str, None] = None
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
"""
azure_ad_token_provider: Union[Callable[[], str], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every sync request. For async requests,
will be invoked if `azure_ad_async_token_provider` is not provided.
"""
azure_ad_async_token_provider: Union[Callable[[], Awaitable[str]], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every async request.
"""
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
validate_base_url: bool = True
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that api key and python package exists in environment."""
# Check OPENAI_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
values["openai_api_key"] = (
values.get("openai_api_key")
or os.getenv("AZURE_OPENAI_API_KEY")
or os.getenv("OPENAI_API_KEY")
)
values["openai_api_base"] = values.get("openai_api_base") or os.getenv(
"OPENAI_API_BASE"
)
values["openai_api_version"] = values.get("openai_api_version") or os.getenv(
"OPENAI_API_VERSION", default="2023-05-15"
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
)
values["openai_organization"] = (
values.get("openai_organization")
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["azure_endpoint"] = values.get("azure_endpoint") or os.getenv(
"AZURE_OPENAI_ENDPOINT"
)
values["azure_ad_token"] = values.get("azure_ad_token") or os.getenv(
"AZURE_OPENAI_AD_TOKEN"
)
# Azure OpenAI embedding models allow a maximum of 2048 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = min(values["chunk_size"], 2048)
try:
import openai # noqa: F401
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if is_openai_v1():
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
if "/openai" not in openai_api_base:
values["openai_api_base"] += "/openai"
warnings.warn(
"As of openai>=1.0.0, Azure endpoints should be specified via "
f"the `azure_endpoint` param not `openai_api_base` "
f"(or alias `base_url`). Updating `openai_api_base` from "
f"{openai_api_base} to {values['openai_api_base']}."
)
if values["deployment"]:
warnings.warn(
"As of openai>=1.0.0, if `deployment` (or alias "
"`azure_deployment`) is specified then "
"`openai_api_base` (or alias `base_url`) should not be. "
"Instead use `deployment` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
if values["deployment"] not in values["openai_api_base"]:
warnings.warn(
"As of openai>=1.0.0, if `openai_api_base` "
"(or alias `base_url`) is specified it is expected to be "
"of the form "
"https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501
f"Updating {openai_api_base} to "
f"{values['openai_api_base']}."
)
values["openai_api_base"] += (
"/deployments/" + values["deployment"]
)
values["deployment"] = None
return values
@model_validator(mode="after")
def post_init_validator(self) -> Self:
"""Validate that the base url is set."""
import openai
if is_openai_v1():
client_params = {
"api_version": self.openai_api_version,
"azure_endpoint": self.azure_endpoint,
"azure_deployment": self.deployment,
"api_key": self.openai_api_key,
"azure_ad_token": self.azure_ad_token,
"azure_ad_token_provider": self.azure_ad_token_provider,
"organization": self.openai_organization,
"base_url": self.openai_api_base,
"timeout": self.request_timeout,
"max_retries": self.max_retries,
"default_headers": self.default_headers,
"default_query": self.default_query,
"http_client": self.http_client,
}
self.client = openai.AzureOpenAI(**client_params).embeddings # type: ignore[arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type]
if self.azure_ad_async_token_provider:
client_params["azure_ad_token_provider"] = (
self.azure_ad_async_token_provider
)
self.async_client = openai.AsyncAzureOpenAI(**client_params).embeddings # type: ignore[arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type, arg-type]
else:
self.client = openai.Embedding # type: ignore[attr-defined]
return self
@property
def _llm_type(self) -> str:
return "azure-openai-chat"