Source code for langchain_community.embeddings.cloudflare_workersai
from typing import Any, Dict, List
import requests
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict
DEFAULT_MODEL_NAME = "@cf/baai/bge-base-en-v1.5"
[docs]
class CloudflareWorkersAIEmbeddings(BaseModel, Embeddings):
"""Cloudflare Workers AI embedding model.
To use, you need to provide an API token and
account ID to access Cloudflare Workers AI.
Example:
.. code-block:: python
from langchain_community.embeddings import CloudflareWorkersAIEmbeddings
account_id = "my_account_id"
api_token = "my_secret_api_token"
model_name = "@cf/baai/bge-small-en-v1.5"
cf = CloudflareWorkersAIEmbeddings(
account_id=account_id,
api_token=api_token,
model_name=model_name
)
"""
api_base_url: str = "https://api.cloudflare.com/client/v4/accounts"
account_id: str
api_token: str
model_name: str = DEFAULT_MODEL_NAME
batch_size: int = 50
strip_new_lines: bool = True
headers: Dict[str, str] = {"Authorization": "Bearer "}
def __init__(self, **kwargs: Any):
"""Initialize the Cloudflare Workers AI client."""
super().__init__(**kwargs)
self.headers = {"Authorization": f"Bearer {self.api_token}"}
model_config = ConfigDict(extra="forbid", protected_namespaces=())
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using Cloudflare Workers AI.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
if self.strip_new_lines:
texts = [text.replace("\n", " ") for text in texts]
batches = [
texts[i : i + self.batch_size]
for i in range(0, len(texts), self.batch_size)
]
embeddings = []
for batch in batches:
response = requests.post(
f"{self.api_base_url}/{self.account_id}/ai/run/{self.model_name}",
headers=self.headers,
json={"text": batch},
)
embeddings.extend(response.json()["result"]["data"])
return embeddings
[docs]
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using Cloudflare Workers AI.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ") if self.strip_new_lines else text
response = requests.post(
f"{self.api_base_url}/{self.account_id}/ai/run/{self.model_name}",
headers=self.headers,
json={"text": [text]},
)
return response.json()["result"]["data"][0]