from __future__ import annotations
import logging
from typing import (
Any,
Callable,
Dict,
List,
Optional,
)
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator
from requests.exceptions import HTTPError
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
logger = logging.getLogger(__name__)
BATCH_SIZE = {"text-embedding-v1": 25, "text-embedding-v2": 25, "text-embedding-v3": 6}
def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]:
multiplier = 1
min_seconds = 1
max_seconds = 4
# Wait 2^x * 1 second between each retry starting with
# 1 seconds, then up to 4 seconds, then 4 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds),
retry=(retry_if_exception_type(HTTPError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]
def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
result = []
i = 0
input_data = kwargs["input"]
input_len = len(input_data) if isinstance(input_data, list) else 1
batch_size = BATCH_SIZE.get(kwargs["model"], 25)
while i < input_len:
kwargs["input"] = (
input_data[i : i + batch_size]
if isinstance(input_data, list)
else input_data
)
resp = embeddings.client.call(**kwargs)
if resp.status_code == 200:
result += resp.output["embeddings"]
elif resp.status_code in [400, 401]:
raise ValueError(
f"status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}"
)
else:
raise HTTPError(
f"HTTP error occurred: status_code: {resp.status_code} \n "
f"code: {resp.code} \n message: {resp.message}",
response=resp,
)
i += batch_size
return result
return _embed_with_retry(**kwargs)
[docs]
class DashScopeEmbeddings(BaseModel, Embeddings):
"""DashScope embedding models.
To use, you should have the ``dashscope`` python package installed, and the
environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key")
Example:
.. code-block:: python
import os
os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY"
from langchain_community.embeddings.dashscope import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(
model="text-embedding-v1",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any = None #: :meta private:
"""The DashScope client."""
model: str = "text-embedding-v1"
dashscope_api_key: Optional[str] = None
max_retries: int = 5
"""Maximum number of retries to make when generating."""
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
import dashscope
"""Validate that api key and python package exists in environment."""
values["dashscope_api_key"] = get_from_dict_or_env(
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
)
dashscope.api_key = values["dashscope_api_key"]
try:
import dashscope
values["client"] = dashscope.TextEmbedding
except ImportError:
raise ImportError(
"Could not import dashscope python package. "
"Please install it with `pip install dashscope`."
)
return values
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to DashScope's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = embed_with_retry(
self, input=texts, text_type="document", model=self.model
)
embedding_list = [item["embedding"] for item in embeddings]
return embedding_list
[docs]
def embed_query(self, text: str) -> List[float]:
"""Call out to DashScope's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embedding = embed_with_retry(
self, input=text, text_type="query", model=self.model
)[0]["embedding"]
return embedding