Source code for langchain_community.embeddings.google_palm
from __future__ import annotations
import logging
from typing import Any, Callable, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import BaseModel, ConfigDict
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
import google.api_core.exceptions
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted)
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable)
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]
def embed_with_retry(
embeddings: GooglePalmEmbeddings, *args: Any, **kwargs: Any
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
return embeddings.client.generate_embeddings(*args, **kwargs)
return _embed_with_retry(*args, **kwargs)
[docs]
class GooglePalmEmbeddings(BaseModel, Embeddings):
"""Google's PaLM Embeddings APIs."""
client: Any
google_api_key: Optional[str]
model_name: str = "models/embedding-gecko-001"
"""Model name to use."""
show_progress_bar: bool = False
"""Whether to show a tqdm progress bar. Must have `tqdm` installed."""
model_config = ConfigDict(protected_namespaces=())
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ImportError("Could not import google.generativeai python package.")
values["client"] = genai
return values
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
if self.show_progress_bar:
try:
from tqdm import tqdm
iter_ = tqdm(texts, desc="GooglePalmEmbeddings")
except ImportError:
logger.warning(
"Unable to show progress bar because tqdm could not be imported. "
"Please install with `pip install tqdm`."
)
iter_ = texts
else:
iter_ = texts
return [self.embed_query(text) for text in iter_]
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
embedding = embed_with_retry(self, self.model_name, text)
return embedding["embedding"]