Source code for langchain_community.embeddings.llamacpp

from typing import Any, List, Optional

from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Self


[docs] class LlamaCppEmbeddings(BaseModel, Embeddings): """llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain_community.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ client: Any = None #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(512, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers") """Number of layers to be loaded into gpu memory. Default None.""" verbose: bool = Field(True, alias="verbose") """Print verbose output to stderr.""" device: Optional[str] = Field(None, alias="device") """Device type to use and pass to the model""" model_config = ConfigDict( extra="forbid", protected_namespaces=(), ) @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that llama-cpp-python library is installed.""" model_path = self.model_path model_param_names = [ "n_ctx", "n_parts", "seed", "f16_kv", "logits_all", "vocab_only", "use_mlock", "n_threads", "n_batch", "verbose", "device", ] model_params = {k: getattr(self, k) for k in model_param_names} # For backwards compatibility, only include if non-null. if self.n_gpu_layers is not None: model_params["n_gpu_layers"] = self.n_gpu_layers try: from llama_cpp import Llama self.client = Llama(model_path, embedding=True, **model_params) except ImportError: raise ImportError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception as e: raise ValueError( f"Could not load Llama model from path: {model_path}. " f"Received error {e}" ) return self
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.create_embedding(texts) return [list(map(float, e["embedding"])) for e in embeddings["data"]]
[docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the Llama model. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed(text) return list(map(float, embedding))