Source code for langchain_community.llms.chatglm3
import json
import logging
from typing import Any, List, Optional, Union
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from pydantic import Field
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
HEADERS = {"Content-Type": "application/json"}
DEFAULT_TIMEOUT = 30
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {"role": "function", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
[docs]
class ChatGLM3(LLM):
"""ChatGLM3 LLM service."""
model_name: str = Field(default="chatglm3-6b", alias="model")
endpoint_url: str = "http://127.0.0.1:8000/v1/chat/completions"
"""Endpoint URL to use."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
max_tokens: int = 20000
"""Max token allowed to pass to the model."""
temperature: float = 0.1
"""LLM model temperature from 0 to 10."""
top_p: float = 0.7
"""Top P for nucleus sampling from 0 to 1"""
prefix_messages: List[BaseMessage] = Field(default_factory=list)
"""Series of messages for Chat input."""
streaming: bool = False
"""Whether to stream the results or not."""
http_client: Union[Any, None] = None
timeout: int = DEFAULT_TIMEOUT
@property
def _llm_type(self) -> str:
return "chat_glm_3"
@property
def _invocation_params(self) -> dict:
"""Get the parameters used to invoke the model."""
params = {
"model": self.model_name,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"stream": self.streaming,
}
return {**params, **(self.model_kwargs or {})}
@property
def client(self) -> Any:
import httpx
return self.http_client or httpx.Client(timeout=self.timeout)
def _get_payload(self, prompt: str) -> dict:
params = self._invocation_params
messages = self.prefix_messages + [HumanMessage(content=prompt)]
params.update(
{
"messages": [_convert_message_to_dict(m) for m in messages],
}
)
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to a ChatGLM3 LLM inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = chatglm_llm.invoke("Who are you?")
"""
import httpx
payload = self._get_payload(prompt)
logger.debug(f"ChatGLM3 payload: {payload}")
try:
response = self.client.post(
self.endpoint_url, headers=HEADERS, json=payload
)
except httpx.NetworkError as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
logger.debug(f"ChatGLM3 response: {response}")
if response.status_code != 200:
raise ValueError(f"Failed with response: {response}")
try:
parsed_response = response.json()
if isinstance(parsed_response, dict):
content_keys = "choices"
if content_keys in parsed_response:
choices = parsed_response[content_keys]
if len(choices):
text = choices[0]["message"]["content"]
else:
raise ValueError(f"No content in response : {parsed_response}")
else:
raise ValueError(f"Unexpected response type: {parsed_response}")
except json.JSONDecodeError as e:
raise ValueError(
f"Error raised during decoding response from inference endpoint: {e}."
f"\nResponse: {response.text}"
)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text