Source code for langchain_community.llms.fake
import asyncio
import time
from typing import Any, AsyncIterator, Iterator, List, Mapping, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.llms import LLM
from langchain_core.runnables import RunnableConfig
[docs]
class FakeListLLM(LLM):
"""Fake LLM for testing purposes."""
responses: List[str]
sleep: Optional[float] = None
i: int = 0
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake-list"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Return next response"""
response = self.responses[self.i]
if self.i < len(self.responses) - 1:
self.i += 1
else:
self.i = 0
return response
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Return next response"""
response = self.responses[self.i]
if self.i < len(self.responses) - 1:
self.i += 1
else:
self.i = 0
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"responses": self.responses}
[docs]
class FakeStreamingListLLM(FakeListLLM):
"""Fake streaming list LLM for testing purposes."""
[docs]
def stream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
result = self.invoke(input, config)
for c in result:
if self.sleep is not None:
time.sleep(self.sleep)
yield c
[docs]
async def astream(
self,
input: LanguageModelInput,
config: Optional[RunnableConfig] = None,
*,
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> AsyncIterator[str]:
result = await self.ainvoke(input, config)
for c in result:
if self.sleep is not None:
await asyncio.sleep(self.sleep)
yield c