from __future__ import annotations
import logging
from functools import cached_property
from typing import TYPE_CHECKING, Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.load.serializable import Serializable
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.utils import pre_init
from langchain_core.utils.pydantic import get_fields
from pydantic import ConfigDict
if TYPE_CHECKING:
import gigachat
import gigachat.models as gm
logger = logging.getLogger(__name__)
class _BaseGigaChat(Serializable):
base_url: Optional[str] = None
""" Base API URL """
auth_url: Optional[str] = None
""" Auth URL """
credentials: Optional[str] = None
""" Auth Token """
scope: Optional[str] = None
""" Permission scope for access token """
access_token: Optional[str] = None
""" Access token for GigaChat """
model: Optional[str] = None
"""Model name to use."""
user: Optional[str] = None
""" Username for authenticate """
password: Optional[str] = None
""" Password for authenticate """
timeout: Optional[float] = None
""" Timeout for request """
verify_ssl_certs: Optional[bool] = None
""" Check certificates for all requests """
ca_bundle_file: Optional[str] = None
cert_file: Optional[str] = None
key_file: Optional[str] = None
key_file_password: Optional[str] = None
# Support for connection to GigaChat through SSL certificates
profanity: bool = True
""" DEPRECATED: Check for profanity """
profanity_check: Optional[bool] = None
""" Check for profanity """
streaming: bool = False
""" Whether to stream the results or not. """
temperature: Optional[float] = None
""" What sampling temperature to use. """
max_tokens: Optional[int] = None
""" Maximum number of tokens to generate """
use_api_for_tokens: bool = False
""" Use GigaChat API for tokens count """
verbose: bool = False
""" Verbose logging """
top_p: Optional[float] = None
""" top_p value to use for nucleus sampling. Must be between 0.0 and 1.0 """
repetition_penalty: Optional[float] = None
""" The penalty applied to repeated tokens """
update_interval: Optional[float] = None
""" Minimum interval in seconds that elapses between sending tokens """
@property
def _llm_type(self) -> str:
return "giga-chat-model"
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"credentials": "GIGACHAT_CREDENTIALS",
"access_token": "GIGACHAT_ACCESS_TOKEN",
"password": "GIGACHAT_PASSWORD",
"key_file_password": "GIGACHAT_KEY_FILE_PASSWORD",
}
@property
def lc_serializable(self) -> bool:
return True
@cached_property
def _client(self) -> gigachat.GigaChat:
"""Returns GigaChat API client"""
import gigachat
return gigachat.GigaChat(
base_url=self.base_url,
auth_url=self.auth_url,
credentials=self.credentials,
scope=self.scope,
access_token=self.access_token,
model=self.model,
profanity_check=self.profanity_check,
user=self.user,
password=self.password,
timeout=self.timeout,
verify_ssl_certs=self.verify_ssl_certs,
ca_bundle_file=self.ca_bundle_file,
cert_file=self.cert_file,
key_file=self.key_file,
key_file_password=self.key_file_password,
verbose=self.verbose,
)
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate authenticate data in environment and python package is installed."""
try:
import gigachat # noqa: F401
except ImportError:
raise ImportError(
"Could not import gigachat python package. "
"Please install it with `pip install gigachat`."
)
fields = set(get_fields(cls).keys())
diff = set(values.keys()) - fields
if diff:
logger.warning(f"Extra fields {diff} in GigaChat class")
if "profanity" in fields and values.get("profanity") is False:
logger.warning(
"'profanity' field is deprecated. Use 'profanity_check' instead."
)
if values.get("profanity_check") is None:
values["profanity_check"] = values.get("profanity")
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"temperature": self.temperature,
"model": self.model,
"profanity": self.profanity_check,
"streaming": self.streaming,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"repetition_penalty": self.repetition_penalty,
}
def tokens_count(
self, input_: List[str], model: Optional[str] = None
) -> List[gm.TokensCount]:
"""Get tokens of string list"""
return self._client.tokens_count(input_, model)
async def atokens_count(
self, input_: List[str], model: Optional[str] = None
) -> List[gm.TokensCount]:
"""Get tokens of strings list (async)"""
return await self._client.atokens_count(input_, model)
def get_models(self) -> gm.Models:
"""Get available models of Gigachat"""
return self._client.get_models()
async def aget_models(self) -> gm.Models:
"""Get available models of Gigachat (async)"""
return await self._client.aget_models()
def get_model(self, model: str) -> gm.Model:
"""Get info about model"""
return self._client.get_model(model)
async def aget_model(self, model: str) -> gm.Model:
"""Get info about model (async)"""
return await self._client.aget_model(model)
def get_num_tokens(self, text: str) -> int:
"""Count approximate number of tokens"""
if self.use_api_for_tokens:
return self.tokens_count([text])[0].tokens # type: ignore
else:
return round(len(text) / 4.6)
[docs]
class GigaChat(_BaseGigaChat, BaseLLM):
"""`GigaChat` large language models API.
To use, you should pass login and password to access GigaChat API or use token.
Example:
.. code-block:: python
from langchain_community.llms import GigaChat
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
"""
payload_role: str = "user"
def _build_payload(self, messages: List[str]) -> Dict[str, Any]:
payload: Dict[str, Any] = {
"messages": [{"role": self.payload_role, "content": m} for m in messages],
}
if self.model:
payload["model"] = self.model
if self.profanity_check is not None:
payload["profanity_check"] = self.profanity_check
if self.temperature is not None:
payload["temperature"] = self.temperature
if self.top_p is not None:
payload["top_p"] = self.top_p
if self.max_tokens is not None:
payload["max_tokens"] = self.max_tokens
if self.repetition_penalty is not None:
payload["repetition_penalty"] = self.repetition_penalty
if self.update_interval is not None:
payload["update_interval"] = self.update_interval
if self.verbose:
logger.info("Giga request: %s", payload)
return payload
def _create_llm_result(self, response: Any) -> LLMResult:
generations = []
for res in response.choices:
finish_reason = res.finish_reason
gen = Generation(
text=res.message.content,
generation_info={"finish_reason": finish_reason},
)
generations.append([gen])
if finish_reason != "stop":
logger.warning(
"Giga generation stopped with reason: %s",
finish_reason,
)
if self.verbose:
logger.info("Giga response: %s", res.message.content)
token_usage = response.usage
llm_output = {"token_usage": token_usage, "model_name": response.model}
return LLMResult(generations=generations, llm_output=llm_output)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._stream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = self._client.chat(payload)
return self._create_llm_result(response)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
if should_stream:
generation: Optional[GenerationChunk] = None
stream_iter = self._astream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
async for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
payload = self._build_payload(prompts)
response = await self._client.achat(payload)
return self._create_llm_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
payload = self._build_payload([prompt])
for chunk in self._client.stream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
if run_manager:
run_manager.on_llm_new_token(content)
yield GenerationChunk(text=content)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
payload = self._build_payload([prompt])
async for chunk in self._client.astream(payload):
if chunk.choices:
content = chunk.choices[0].delta.content
if run_manager:
await run_manager.on_llm_new_token(content)
yield GenerationChunk(text=content)
model_config = ConfigDict(
extra="allow",
)