Source code for langchain_community.llms.gradient_ai

import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List, Mapping, Optional, Sequence, TypedDict

import aiohttp
import requests
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.utils import get_from_dict_or_env
from pydantic import ConfigDict, Field, model_validator
from typing_extensions import Self

from langchain_community.llms.utils import enforce_stop_tokens


[docs] class TrainResult(TypedDict): """Train result.""" loss: float
[docs] class GradientLLM(BaseLLM): """Gradient.ai LLM Endpoints. GradientLLM is a class to interact with LLMs on gradient.ai To use, set the environment variable ``GRADIENT_ACCESS_TOKEN`` with your API token and ``GRADIENT_WORKSPACE_ID`` for your gradient workspace, or alternatively provide them as keywords to the constructor of this class. Example: .. code-block:: python from langchain_community.llms import GradientLLM GradientLLM( model="99148c6d-c2a0-4fbe-a4a7-e7c05bdb8a09_base_ml_model", model_kwargs={ "max_generated_token_count": 128, "temperature": 0.75, "top_p": 0.95, "top_k": 20, "stop": [], }, gradient_workspace_id="12345614fc0_workspace", gradient_access_token="gradientai-access_token", ) """ model_id: str = Field(alias="model", min_length=2) "Underlying gradient.ai model id (base or fine-tuned)." gradient_workspace_id: Optional[str] = None "Underlying gradient.ai workspace_id." gradient_access_token: Optional[str] = None """gradient.ai API Token, which can be generated by going to https://auth.gradient.ai/select-workspace and selecting "Access tokens" under the profile drop-down. """ model_kwargs: Optional[dict] = None """Keyword arguments to pass to the model.""" gradient_api_url: str = "https://api.gradient.ai/api" """Endpoint URL to use.""" aiosession: Optional[aiohttp.ClientSession] = None #: :meta private: """ClientSession, private, subject to change in upcoming releases.""" # LLM call kwargs model_config = ConfigDict( populate_by_name=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["gradient_access_token"] = get_from_dict_or_env( values, "gradient_access_token", "GRADIENT_ACCESS_TOKEN" ) values["gradient_workspace_id"] = get_from_dict_or_env( values, "gradient_workspace_id", "GRADIENT_WORKSPACE_ID" ) values["gradient_api_url"] = get_from_dict_or_env( values, "gradient_api_url", "GRADIENT_API_URL" ) return values @model_validator(mode="after") def post_init(self) -> Self: """Post init validation.""" # Can be most to post_init_validation try: import gradientai # noqa except ImportError: logging.warning( "DeprecationWarning: `GradientLLM` will use " "`pip install gradientai` in future releases of langchain." ) except Exception: pass # Can be most to post_init_validation if self.gradient_access_token is None or len(self.gradient_access_token) < 10: raise ValueError("env variable `GRADIENT_ACCESS_TOKEN` must be set") if self.gradient_workspace_id is None or len(self.gradient_access_token) < 3: raise ValueError("env variable `GRADIENT_WORKSPACE_ID` must be set") if self.model_kwargs: kw = self.model_kwargs if not 0 <= kw.get("temperature", 0.5) <= 1: raise ValueError("`temperature` must be in the range [0.0, 1.0]") if not 0 <= kw.get("top_p", 0.5) <= 1: raise ValueError("`top_p` must be in the range [0.0, 1.0]") if 0 >= kw.get("top_k", 0.5): raise ValueError("`top_k` must be positive") if 0 >= kw.get("max_generated_token_count", 1): raise ValueError("`max_generated_token_count` must be positive") return self @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"gradient_api_url": self.gradient_api_url}, **{"model_kwargs": _model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "gradient" def _kwargs_post_fine_tune_request( self, inputs: Sequence[str], kwargs: Mapping[str, Any] ) -> Mapping[str, Any]: """Build the kwargs for the Post request, used by sync Args: prompt (str): prompt used in query kwargs (dict): model kwargs in payload Returns: Dict[str, Union[str,dict]]: _description_ """ _model_kwargs = self.model_kwargs or {} _params = {**_model_kwargs, **kwargs} multipliers = _params.get("multipliers", None) return dict( url=f"{self.gradient_api_url}/models/{self.model_id}/fine-tune", headers={ "authorization": f"Bearer {self.gradient_access_token}", "x-gradient-workspace-id": f"{self.gradient_workspace_id}", "accept": "application/json", "content-type": "application/json", }, json=dict( samples=( tuple( { "inputs": input, } for input in inputs ) if multipliers is None else tuple( { "inputs": input, "fineTuningParameters": { "multiplier": multiplier, }, } for input, multiplier in zip(inputs, multipliers) ) ), ), ) def _kwargs_post_request( self, prompt: str, kwargs: Mapping[str, Any] ) -> Mapping[str, Any]: """Build the kwargs for the Post request, used by sync Args: prompt (str): prompt used in query kwargs (dict): model kwargs in payload Returns: Dict[str, Union[str,dict]]: _description_ """ _model_kwargs = self.model_kwargs or {} _params = {**_model_kwargs, **kwargs} return dict( url=f"{self.gradient_api_url}/models/{self.model_id}/complete", headers={ "authorization": f"Bearer {self.gradient_access_token}", "x-gradient-workspace-id": f"{self.gradient_workspace_id}", "accept": "application/json", "content-type": "application/json", }, json=dict( query=prompt, maxGeneratedTokenCount=_params.get("max_generated_token_count", None), temperature=_params.get("temperature", None), topK=_params.get("top_k", None), topP=_params.get("top_p", None), ), ) def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to Gradients API `model/{id}/complete`. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. """ try: response = requests.post(**self._kwargs_post_request(prompt, kwargs)) if response.status_code != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status_code}: {response.text}" ) except requests.exceptions.RequestException as e: raise Exception(f"RequestException while calling Gradient Endpoint: {e}") text = response.json()["generatedOutput"] if stop is not None: # Apply stop tokens when making calls to Gradient text = enforce_stop_tokens(text, stop) return text async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Async Call to Gradients API `model/{id}/complete`. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. """ if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.post( **self._kwargs_post_request(prompt=prompt, kwargs=kwargs) ) as response: if response.status != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status}: {response.text}" ) text = (await response.json())["generatedOutput"] else: async with self.aiosession.post( **self._kwargs_post_request(prompt=prompt, kwargs=kwargs) ) as response: if response.status != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status}: {response.text}" ) text = (await response.json())["generatedOutput"] if stop is not None: # Apply stop tokens when making calls to Gradient text = enforce_stop_tokens(text, stop) return text def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Run the LLM on the given prompt and input.""" # same thing with threading def _inner_generate(prompt: str) -> List[Generation]: return [ Generation( text=self._call( prompt=prompt, stop=stop, run_manager=run_manager, **kwargs ) ) ] if len(prompts) <= 1: generations = list(map(_inner_generate, prompts)) else: with ThreadPoolExecutor(min(8, len(prompts))) as p: generations = list(p.map(_inner_generate, prompts)) return LLMResult(generations=generations) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Run the LLM on the given prompt and input.""" generations = [] for generation in await asyncio.gather( *[ self._acall(prompt, stop=stop, run_manager=run_manager, **kwargs) for prompt in prompts ] ): generations.append([Generation(text=generation)]) return LLMResult(generations=generations)
[docs] def train_unsupervised( self, inputs: Sequence[str], **kwargs: Any, ) -> TrainResult: try: response = requests.post( **self._kwargs_post_fine_tune_request(inputs, kwargs) ) if response.status_code != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status_code}: {response.text}" ) except requests.exceptions.RequestException as e: raise Exception(f"RequestException while calling Gradient Endpoint: {e}") response_json = response.json() loss = response_json["sumLoss"] / response_json["numberOfTrainableTokens"] return TrainResult(loss=loss)
[docs] async def atrain_unsupervised( self, inputs: Sequence[str], **kwargs: Any, ) -> TrainResult: if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.post( **self._kwargs_post_fine_tune_request(inputs, kwargs) ) as response: if response.status != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() loss = ( response_json["sumLoss"] / response_json["numberOfTrainableTokens"] ) else: async with self.aiosession.post( **self._kwargs_post_fine_tune_request(inputs, kwargs) ) as response: if response.status != 200: raise Exception( f"Gradient returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() loss = ( response_json["sumLoss"] / response_json["numberOfTrainableTokens"] ) return TrainResult(loss=loss)