Source code for langchain_community.llms.outlines

from __future__ import annotations

import importlib.util
import logging
import platform
from typing import Any, Callable, Dict, Iterator, List, Literal, Optional, Tuple, Union

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from pydantic import BaseModel, Field, model_validator

logger = logging.getLogger(__name__)


[docs] class Outlines(LLM): """LLM wrapper for the Outlines library.""" client: Any = None # :meta private: model: str """Identifier for the model to use with Outlines. The model identifier should be a string specifying: - A Hugging Face model name (e.g., "meta-llama/Llama-2-7b-chat-hf") - A local path to a model - For GGUF models, the format is "repo_id/file_name" (e.g., "TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q4_K_M.gguf") Examples: - "TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q4_K_M.gguf" - "meta-llama/Llama-2-7b-chat-hf" """ backend: Literal[ "llamacpp", "transformers", "transformers_vision", "vllm", "mlxlm" ] = "transformers" """Specifies the backend to use for the model. Supported backends are: - "llamacpp": For GGUF models using llama.cpp - "transformers": For Hugging Face Transformers models (default) - "transformers_vision": For vision-language models (e.g., LLaVA) - "vllm": For models using the vLLM library - "mlxlm": For models using the MLX framework Note: Ensure you have the necessary dependencies installed for the chosen backend. The system will attempt to import required packages and may raise an ImportError if they are not available. """ max_tokens: int = 256 """The maximum number of tokens to generate.""" stop: Optional[List[str]] = None """A list of strings to stop generation when encountered.""" streaming: bool = True """Whether to stream the results, token by token.""" regex: Optional[str] = None """Regular expression for structured generation. If provided, Outlines will guarantee that the generated text matches this regex. This can be useful for generating structured outputs like IP addresses, dates, etc. Example: (valid IP address) regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)" Note: Computing the regex index can take some time, so it's recommended to reuse the same regex for multiple generations if possible. For more details, see: https://dottxt-ai.github.io/outlines/reference/generation/regex/ """ type_constraints: Optional[Union[type, str]] = None """Type constraints for structured generation. Restricts the output to valid Python types. Supported types include: int, float, bool, datetime.date, datetime.time, datetime.datetime. Example: type_constraints = int For more details, see: https://dottxt-ai.github.io/outlines/reference/generation/format/ """ json_schema: Optional[Union[BaseModel, Dict, Callable]] = None """Pydantic model, JSON Schema, or callable (function signature) for structured JSON generation. Outlines can generate JSON output that follows a specified structure, which is useful for: 1. Parsing the answer (e.g., with Pydantic), storing it, or returning it to a user. 2. Calling a function with the result. You can provide: - A Pydantic model - A JSON Schema (as a Dict) - A callable (function signature) The generated JSON will adhere to the specified structure. For more details, see: https://dottxt-ai.github.io/outlines/reference/generation/json/ """ grammar: Optional[str] = None """Context-free grammar for structured generation. If provided, Outlines will generate text that adheres to the specified grammar. The grammar should be defined in EBNF format. This can be useful for generating structured outputs like mathematical expressions, programming languages, or custom domain-specific languages. Example: grammar = ''' ?start: expression ?expression: term (("+" | "-") term)* ?term: factor (("*" | "/") factor)* ?factor: NUMBER | "-" factor | "(" expression ")" %import common.NUMBER ''' Note: Grammar-based generation is currently experimental and may have performance limitations. It uses greedy generation to mitigate these issues. For more details and examples, see: https://dottxt-ai.github.io/outlines/reference/generation/cfg/ """ custom_generator: Optional[Any] = None """Set your own outlines generator object to override the default behavior.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Additional parameters to pass to the underlying model. Example: model_kwargs = {"temperature": 0.8, "seed": 42} """ @model_validator(mode="after") def validate_environment(self) -> "Outlines": """Validate that outlines is installed and create a model instance.""" num_constraints = sum( [ bool(self.regex), bool(self.type_constraints), bool(self.json_schema), bool(self.grammar), ] ) if num_constraints > 1: raise ValueError( "Either none or exactly one of regex, type_constraints, " "json_schema, or grammar can be provided." ) return self.build_client()
[docs] def build_client(self) -> "Outlines": try: import outlines.models as models except ImportError: raise ImportError( "Could not import the Outlines library. " "Please install it with `pip install outlines`." ) def check_packages_installed( packages: List[Union[str, Tuple[str, str]]], ) -> None: missing_packages = [ pkg if isinstance(pkg, str) else pkg[0] for pkg in packages if importlib.util.find_spec(pkg[1] if isinstance(pkg, tuple) else pkg) is None ] if missing_packages: raise ImportError( # todo this is displaying wrong f"Missing packages: {', '.join(missing_packages)}. " "You can install them with:\n\n" f" pip install {' '.join(missing_packages)}" ) if self.backend == "llamacpp": if ".gguf" in self.model: creator, repo_name, file_name = self.model.split("/", 2) repo_id = f"{creator}/{repo_name}" else: # todo add auto-file-selection if no file is given raise ValueError("GGUF file_name must be provided for llama.cpp.") check_packages_installed([("llama-cpp-python", "llama_cpp")]) self.client = models.llamacpp(repo_id, file_name, **self.model_kwargs) elif self.backend == "transformers": check_packages_installed(["transformers", "torch", "datasets"]) self.client = models.transformers(self.model, **self.model_kwargs) elif self.backend == "transformers_vision": check_packages_installed( ["transformers", "datasets", "torchvision", "PIL", "flash_attn"] ) from transformers import LlavaNextForConditionalGeneration if not hasattr(models, "transformers_vision"): raise ValueError( "transformers_vision backend is not supported, " "please install the correct outlines version." ) self.client = models.transformers_vision( self.model, model_class=LlavaNextForConditionalGeneration, **self.model_kwargs, ) elif self.backend == "vllm": if platform.system() == "Darwin": raise ValueError("vLLM backend is not supported on macOS.") check_packages_installed(["vllm"]) self.client = models.vllm(self.model, **self.model_kwargs) elif self.backend == "mlxlm": check_packages_installed(["mlx"]) self.client = models.mlxlm(self.model, **self.model_kwargs) else: raise ValueError(f"Unsupported backend: {self.backend}") return self
@property def _llm_type(self) -> str: return "outlines" @property def _default_params(self) -> Dict[str, Any]: return { "max_tokens": self.max_tokens, "stop_at": self.stop, **self.model_kwargs, } @property def _identifying_params(self) -> Dict[str, Any]: return { "model": self.model, "backend": self.backend, "regex": self.regex, "type_constraints": self.type_constraints, "json_schema": self.json_schema, "grammar": self.grammar, **self._default_params, } @property def _generator(self) -> Any: from outlines import generate if self.custom_generator: return self.custom_generator if self.regex: return generate.regex(self.client, regex_str=self.regex) if self.type_constraints: return generate.format(self.client, python_type=self.type_constraints) if self.json_schema: return generate.json(self.client, schema_object=self.json_schema) if self.grammar: return generate.cfg(self.client, cfg_str=self.grammar) return generate.text(self.client) def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: params = {**self._default_params, **kwargs} if stop: params["stop_at"] = stop response = "" if self.streaming: for chunk in self._stream( prompt=prompt, stop=params["stop_at"], run_manager=run_manager, **params, ): response += chunk.text else: response = self._generator(prompt, **params) return response def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params = {**self._default_params, **kwargs} if stop: params["stop_at"] = stop for token in self._generator.stream(prompt, **params): if run_manager: run_manager.on_llm_new_token(token) yield GenerationChunk(text=token) @property def tokenizer(self) -> Any: """Access the tokenizer for the underlying model. .encode() to tokenize text. .decode() to convert tokens back to text. """ if hasattr(self.client, "tokenizer"): return self.client.tokenizer raise ValueError("Tokenizer not found")