import json
import logging
from typing import Any, Dict, Iterator, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.utils import get_from_dict_or_env, pre_init
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
[docs]
class PaiEasEndpoint(LLM):
"""Langchain LLM class to help to access eass llm service.
To use this endpoint, must have a deployed eas chat llm service on PAI AliCloud.
One can set the environment variable ``eas_service_url`` and ``eas_service_token``.
The environment variables can set with your eas service url and service token.
Example:
.. code-block:: python
from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint
eas_chat_endpoint = PaiEasChatEndpoint(
eas_service_url="your_service_url",
eas_service_token="your_service_token"
)
"""
"""PAI-EAS Service URL"""
eas_service_url: str
"""PAI-EAS Service TOKEN"""
eas_service_token: str
"""PAI-EAS Service Infer Params"""
max_new_tokens: Optional[int] = 512
temperature: Optional[float] = 0.95
top_p: Optional[float] = 0.1
top_k: Optional[int] = 0
stop_sequences: Optional[List[str]] = None
"""Enable stream chat mode."""
streaming: bool = False
"""Key/value arguments to pass to the model. Reserved for future use"""
model_kwargs: Optional[dict] = None
version: Optional[str] = "2.0"
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["eas_service_url"] = get_from_dict_or_env(
values, "eas_service_url", "EAS_SERVICE_URL"
)
values["eas_service_token"] = get_from_dict_or_env(
values, "eas_service_token", "EAS_SERVICE_TOKEN"
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "pai_eas_endpoint"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Cohere API."""
return {
"max_new_tokens": self.max_new_tokens,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"stop_sequences": [],
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
"eas_service_url": self.eas_service_url,
"eas_service_token": self.eas_service_token,
**_model_kwargs,
}
def _invocation_params(
self, stop_sequences: Optional[List[str]], **kwargs: Any
) -> dict:
params = self._default_params
if self.stop_sequences is not None and stop_sequences is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop_sequences is not None:
params["stop"] = self.stop_sequences
else:
params["stop"] = stop_sequences
if self.model_kwargs:
params.update(self.model_kwargs)
return {**params, **kwargs}
@staticmethod
def _process_response(
response: Any, stop: Optional[List[str]], version: Optional[str]
) -> str:
if version == "1.0":
text = response
else:
text = response["response"]
if stop:
text = enforce_stop_tokens(text, stop)
return "".join(text)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
params = self._invocation_params(stop, **kwargs)
prompt = prompt.strip()
response = None
try:
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **params):
completion += chunk.text
return completion
else:
response = self._call_eas(prompt, params)
_stop = params.get("stop")
return self._process_response(response, _stop, self.version)
except Exception as error:
raise ValueError(f"Error raised by the service: {error}")
def _call_eas(self, prompt: str = "", params: Dict = {}) -> Any:
"""Generate text from the eas service."""
headers = {
"Content-Type": "application/json",
"Authorization": f"{self.eas_service_token}",
}
if self.version == "1.0":
body = {
"input_ids": f"{prompt}",
}
else:
body = {
"prompt": f"{prompt}",
}
# add params to body
for key, value in params.items():
body[key] = value
# make request
response = requests.post(self.eas_service_url, headers=headers, json=body)
if response.status_code != 200:
raise Exception(
f"Request failed with status code {response.status_code}"
f" and message {response.text}"
)
try:
return json.loads(response.text)
except Exception as e:
if isinstance(e, json.decoder.JSONDecodeError):
return response.text
raise e
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
invocation_params = self._invocation_params(stop, **kwargs)
headers = {
"User-Agent": "Test Client",
"Authorization": f"{self.eas_service_token}",
}
if self.version == "1.0":
pload = {"input_ids": prompt, **invocation_params}
response = requests.post(
self.eas_service_url, headers=headers, json=pload, stream=True
)
res = GenerationChunk(text=response.text)
if run_manager:
run_manager.on_llm_new_token(res.text)
# yield text, if any
yield res
else:
pload = {"prompt": prompt, "use_stream_chat": "True", **invocation_params}
response = requests.post(
self.eas_service_url, headers=headers, json=pload, stream=True
)
for chunk in response.iter_lines(
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["response"]
# identify stop sequence in generated text, if any
stop_seq_found: Optional[str] = None
for stop_seq in invocation_params["stop"]:
if stop_seq in output:
stop_seq_found = stop_seq
# identify text to yield
text: Optional[str] = None
if stop_seq_found:
text = output[: output.index(stop_seq_found)]
else:
text = output
# yield text, if any
if text:
res = GenerationChunk(text=text)
if run_manager:
run_manager.on_llm_new_token(res.text)
yield res
# break if stop sequence found
if stop_seq_found:
break