Source code for langchain_community.llms.predictionguard
import logging
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import ConfigDict
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
[docs]
class PredictionGuard(LLM):
"""Prediction Guard large language models.
To use, you should have the ``predictionguard`` python package installed, and the
environment variable ``PREDICTIONGUARD_TOKEN`` set with your access token, or pass
it as a named parameter to the constructor. To use Prediction Guard's API along
with OpenAI models, set the environment variable ``OPENAI_API_KEY`` with your
OpenAI API key as well.
Example:
.. code-block:: python
pgllm = PredictionGuard(model="MPT-7B-Instruct",
token="my-access-token",
output={
"type": "boolean"
})
"""
client: Any = None #: :meta private:
model: Optional[str] = "MPT-7B-Instruct"
"""Model name to use."""
output: Optional[Dict[str, Any]] = None
"""The output type or structure for controlling the LLM output."""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.75
"""A non-negative float that tunes the degree of randomness in generation."""
token: Optional[str] = None
"""Your Prediction Guard access token."""
stop: Optional[List[str]] = None
model_config = ConfigDict(
extra="forbid",
)
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the access token and python package exists in environment."""
token = get_from_dict_or_env(values, "token", "PREDICTIONGUARD_TOKEN")
try:
import predictionguard as pg
values["client"] = pg.Client(token=token)
except ImportError:
raise ImportError(
"Could not import predictionguard python package. "
"Please install it with `pip install predictionguard`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling the Prediction Guard API."""
return {
"max_tokens": self.max_tokens,
"temperature": self.temperature,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "predictionguard"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Prediction Guard's model API.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = pgllm.invoke("Tell me a joke.")
"""
import predictionguard as pg
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop_sequences"] = self.stop
else:
params["stop_sequences"] = stop
response = pg.Completion.create(
model=self.model,
prompt=prompt,
output=self.output,
temperature=params["temperature"],
max_tokens=params["max_tokens"],
**kwargs,
)
text = response["choices"][0]["text"]
# If stop tokens are provided, Prediction Guard's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stop is not None or self.stop is not None:
text = enforce_stop_tokens(text, params["stop_sequences"])
return text