from __future__ import annotations
import base64
import hashlib
import hmac
import json
import logging
import queue
import threading
from datetime import datetime
from queue import Queue
from time import mktime
from typing import Any, Dict, Generator, Iterator, List, Optional
from urllib.parse import urlencode, urlparse, urlunparse
from wsgiref.handlers import format_date_time
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import Field
logger = logging.getLogger(__name__)
[docs]
class SparkLLM(LLM):
"""iFlyTek Spark completion model integration.
Setup:
To use, you should set environment variables ``IFLYTEK_SPARK_APP_ID``,
``IFLYTEK_SPARK_API_KEY`` and ``IFLYTEK_SPARK_API_SECRET``.
.. code-block:: bash
export IFLYTEK_SPARK_APP_ID="your-app-id"
export IFLYTEK_SPARK_API_KEY="your-api-key"
export IFLYTEK_SPARK_API_SECRET="your-api-secret"
Key init args — completion params:
model: Optional[str]
Name of IFLYTEK SPARK model to use.
temperature: Optional[float]
Sampling temperature.
top_k: Optional[float]
What search sampling control to use.
streaming: Optional[bool]
Whether to stream the results or not.
Key init args — client params:
app_id: Optional[str]
IFLYTEK SPARK API KEY. Automatically inferred from env var `IFLYTEK_SPARK_APP_ID` if not provided.
api_key: Optional[str]
IFLYTEK SPARK API KEY. If not passed in will be read from env var IFLYTEK_SPARK_API_KEY.
api_secret: Optional[str]
IFLYTEK SPARK API SECRET. If not passed in will be read from env var IFLYTEK_SPARK_API_SECRET.
api_url: Optional[str]
Base URL for API requests.
timeout: Optional[int]
Timeout for requests.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.llms import SparkLLM
llm = SparkLLM(
app_id="your-app-id",
api_key="your-api_key",
api_secret="your-api-secret",
# model='Spark4.0 Ultra',
# temperature=...,
# other params...
)
Invoke:
.. code-block:: python
input_text = "用50个字左右阐述,生命的意义在于"
llm.invoke(input_text)
.. code-block:: python
'生命的意义在于实现自我价值,追求内心的平静与快乐,同时为他人和社会带来正面影响。'
Stream:
.. code-block:: python
for chunk in llm.stream(input_text):
print(chunk)
.. code-block:: python
生命 | 的意义在于 | 不断探索和 | 实现个人潜能,通过 | 学习 | 、成长和对社会 | 的贡献,追求内心的满足和幸福。
Async:
.. code-block:: python
await llm.ainvoke(input_text)
# stream:
# async for chunk in llm.astream(input_text):
# print(chunk)
# batch:
# await llm.abatch([input_text])
.. code-block:: python
'生命的意义在于实现自我价值,追求内心的平静与快乐,同时为他人和社会带来正面影响。'
""" # noqa: E501
client: Any = None #: :meta private:
spark_app_id: Optional[str] = Field(default=None, alias="app_id")
"""Automatically inferred from env var `IFLYTEK_SPARK_APP_ID`
if not provided."""
spark_api_key: Optional[str] = Field(default=None, alias="api_key")
"""IFLYTEK SPARK API KEY. If not passed in will be read from
env var IFLYTEK_SPARK_API_KEY."""
spark_api_secret: Optional[str] = Field(default=None, alias="api_secret")
"""IFLYTEK SPARK API SECRET. If not passed in will be read from
env var IFLYTEK_SPARK_API_SECRET."""
spark_api_url: Optional[str] = Field(default=None, alias="api_url")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
spark_llm_domain: Optional[str] = Field(default=None, alias="model")
"""Model name to use."""
spark_user_id: str = "lc_user"
streaming: bool = False
"""Whether to stream the results or not."""
request_timeout: int = Field(default=30, alias="timeout")
"""request timeout for chat http requests"""
temperature: float = 0.5
"""What sampling temperature to use."""
top_k: int = 4
"""What search sampling control to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for API call not explicitly specified."""
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
values["spark_app_id"] = get_from_dict_or_env(
values,
["spark_app_id", "app_id"],
"IFLYTEK_SPARK_APP_ID",
)
values["spark_api_key"] = get_from_dict_or_env(
values,
["spark_api_key", "api_key"],
"IFLYTEK_SPARK_API_KEY",
)
values["spark_api_secret"] = get_from_dict_or_env(
values,
["spark_api_secret", "api_secret"],
"IFLYTEK_SPARK_API_SECRET",
)
values["spark_api_url"] = get_from_dict_or_env(
values,
["spark_api_url", "api_url"],
"IFLYTEK_SPARK_API_URL",
"wss://spark-api.xf-yun.com/v3.5/chat",
)
values["spark_llm_domain"] = get_from_dict_or_env(
values,
["spark_llm_domain", "model"],
"IFLYTEK_SPARK_LLM_DOMAIN",
"generalv3.5",
)
# put extra params into model_kwargs
values["model_kwargs"]["temperature"] = values["temperature"] or cls.temperature
values["model_kwargs"]["top_k"] = values["top_k"] or cls.top_k
values["client"] = _SparkLLMClient(
app_id=values["spark_app_id"],
api_key=values["spark_api_key"],
api_secret=values["spark_api_secret"],
api_url=values["spark_api_url"],
spark_domain=values["spark_llm_domain"],
model_kwargs=values["model_kwargs"],
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "spark-llm-chat"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling SparkLLM API."""
normal_params = {
"spark_llm_domain": self.spark_llm_domain,
"stream": self.streaming,
"request_timeout": self.request_timeout,
"top_k": self.top_k,
"temperature": self.temperature,
}
return {**normal_params, **self.model_kwargs}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an sparkllm for each generation with a prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the llm.
Example:
.. code-block:: python
response = client("Tell me a joke.")
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
completion = ""
self.client.arun(
[{"role": "user", "content": prompt}],
self.spark_user_id,
self.model_kwargs,
self.streaming,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
completion = content["data"]["content"]
return completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
self.client.run(
[{"role": "user", "content": prompt}],
self.spark_user_id,
self.model_kwargs,
True,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
delta = content["data"]
if run_manager:
run_manager.on_llm_new_token(delta)
yield GenerationChunk(text=delta["content"])
class _SparkLLMClient:
"""
Use websocket-client to call the SparkLLM interface provided by Xfyun,
which is the iFlyTek's open platform for AI capabilities
"""
def __init__(
self,
app_id: str,
api_key: str,
api_secret: str,
api_url: Optional[str] = None,
spark_domain: Optional[str] = None,
model_kwargs: Optional[dict] = None,
):
try:
import websocket
self.websocket_client = websocket
except ImportError:
raise ImportError(
"Could not import websocket client python package. "
"Please install it with `pip install websocket-client`."
)
self.api_url = (
"wss://spark-api.xf-yun.com/v3.5/chat" if not api_url else api_url
)
self.app_id = app_id
self.model_kwargs = model_kwargs
self.spark_domain = spark_domain or "generalv3.5"
self.queue: Queue[Dict] = Queue()
self.blocking_message = {"content": "", "role": "assistant"}
self.api_key = api_key
self.api_secret = api_secret
@staticmethod
def _create_url(api_url: str, api_key: str, api_secret: str) -> str:
"""
Generate a request url with an api key and an api secret.
"""
# generate timestamp by RFC1123
date = format_date_time(mktime(datetime.now().timetuple()))
# urlparse
parsed_url = urlparse(api_url)
host = parsed_url.netloc
path = parsed_url.path
signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1"
# encrypt using hmac-sha256
signature_sha = hmac.new(
api_secret.encode("utf-8"),
signature_origin.encode("utf-8"),
digestmod=hashlib.sha256,
).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8")
authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \
headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
encoding="utf-8"
)
# generate url
params_dict = {"authorization": authorization, "date": date, "host": host}
encoded_params = urlencode(params_dict)
url = urlunparse(
(
parsed_url.scheme,
parsed_url.netloc,
parsed_url.path,
parsed_url.params,
encoded_params,
parsed_url.fragment,
)
)
return url
def run(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> None:
self.websocket_client.enableTrace(False)
ws = self.websocket_client.WebSocketApp(
_SparkLLMClient._create_url(
self.api_url,
self.api_key,
self.api_secret,
),
on_message=self.on_message,
on_error=self.on_error,
on_close=self.on_close,
on_open=self.on_open,
)
ws.messages = messages # type: ignore[attr-defined]
ws.user_id = user_id # type: ignore[attr-defined]
ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs # type: ignore[attr-defined]
ws.streaming = streaming # type: ignore[attr-defined]
ws.run_forever()
def arun(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> threading.Thread:
ws_thread = threading.Thread(
target=self.run,
args=(
messages,
user_id,
model_kwargs,
streaming,
),
)
ws_thread.start()
return ws_thread
def on_error(self, ws: Any, error: Optional[Any]) -> None:
self.queue.put({"error": error})
ws.close()
def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None:
logger.debug(
{
"log": {
"close_status_code": close_status_code,
"close_reason": close_reason,
}
}
)
self.queue.put({"done": True})
def on_open(self, ws: Any) -> None:
self.blocking_message = {"content": "", "role": "assistant"}
data = json.dumps(
self.gen_params(
messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs
)
)
ws.send(data)
def on_message(self, ws: Any, message: str) -> None:
data = json.loads(message)
code = data["header"]["code"]
if code != 0:
self.queue.put(
{"error": f"Code: {code}, Error: {data['header']['message']}"}
)
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
if ws.streaming:
self.queue.put({"data": choices["text"][0]})
else:
self.blocking_message["content"] += content
if status == 2:
if not ws.streaming:
self.queue.put({"data": self.blocking_message})
usage_data = (
data.get("payload", {}).get("usage", {}).get("text", {})
if data
else {}
)
self.queue.put({"usage": usage_data})
ws.close()
def gen_params(
self, messages: list, user_id: str, model_kwargs: Optional[dict] = None
) -> dict:
data: Dict = {
"header": {"app_id": self.app_id, "uid": user_id},
"parameter": {"chat": {"domain": self.spark_domain}},
"payload": {"message": {"text": messages}},
}
if model_kwargs:
data["parameter"]["chat"].update(model_kwargs)
logger.debug(f"Spark Request Parameters: {data}")
return data
def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]:
while True:
try:
content = self.queue.get(timeout=timeout)
except queue.Empty as _:
raise TimeoutError(
f"SparkLLMClient wait LLM api response timeout {timeout} seconds"
)
if "error" in content:
raise ConnectionError(content["error"])
if "usage" in content:
yield content
continue
if "done" in content:
break
if "data" not in content:
break
yield content