import json
import logging
from typing import Any, Callable, Dict, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from pydantic import ConfigDict, SecretStr
from requests import ConnectTimeout, ReadTimeout, RequestException
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from langchain_community.llms.utils import enforce_stop_tokens
DEFAULT_NEBULA_SERVICE_URL = "https://api-nebula.symbl.ai"
DEFAULT_NEBULA_SERVICE_PATH = "/v1/model/generate"
logger = logging.getLogger(__name__)
[docs]
class Nebula(LLM):
"""Nebula Service models.
To use, you should have the environment variable ``NEBULA_SERVICE_URL``,
``NEBULA_SERVICE_PATH`` and ``NEBULA_API_KEY`` set with your Nebula
Service, or pass it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms import Nebula
nebula = Nebula(
nebula_service_url="NEBULA_SERVICE_URL",
nebula_service_path="NEBULA_SERVICE_PATH",
nebula_api_key="NEBULA_API_KEY",
)
"""
"""Key/value arguments to pass to the model. Reserved for future use"""
model_kwargs: Optional[dict] = None
"""Optional"""
nebula_service_url: Optional[str] = None
nebula_service_path: Optional[str] = None
nebula_api_key: Optional[SecretStr] = None
model: Optional[str] = None
max_new_tokens: Optional[int] = 128
temperature: Optional[float] = 0.6
top_p: Optional[float] = 0.95
repetition_penalty: Optional[float] = 1.0
top_k: Optional[int] = 1
stop_sequences: Optional[List[str]] = None
max_retries: Optional[int] = 10
model_config = ConfigDict(
extra="forbid",
)
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
nebula_service_url = get_from_dict_or_env(
values,
"nebula_service_url",
"NEBULA_SERVICE_URL",
DEFAULT_NEBULA_SERVICE_URL,
)
nebula_service_path = get_from_dict_or_env(
values,
"nebula_service_path",
"NEBULA_SERVICE_PATH",
DEFAULT_NEBULA_SERVICE_PATH,
)
nebula_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "nebula_api_key", "NEBULA_API_KEY", None)
)
if nebula_service_url.endswith("/"):
nebula_service_url = nebula_service_url[:-1]
if not nebula_service_path.startswith("/"):
nebula_service_path = "/" + nebula_service_path
values["nebula_service_url"] = nebula_service_url
values["nebula_service_path"] = nebula_service_path
values["nebula_api_key"] = nebula_api_key
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Cohere API."""
return {
"max_new_tokens": self.max_new_tokens,
"temperature": self.temperature,
"top_k": self.top_k,
"top_p": self.top_p,
"repetition_penalty": self.repetition_penalty,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
"nebula_service_url": self.nebula_service_url,
"nebula_service_path": self.nebula_service_path,
**{"model_kwargs": _model_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "nebula"
def _invocation_params(
self, stop_sequences: Optional[List[str]], **kwargs: Any
) -> dict:
params = self._default_params
if self.stop_sequences is not None and stop_sequences is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop_sequences is not None:
params["stop_sequences"] = self.stop_sequences
else:
params["stop_sequences"] = stop_sequences
return {**params, **kwargs}
@staticmethod
def _process_response(response: Any, stop: Optional[List[str]]) -> str:
text = response["output"]["text"]
if stop:
text = enforce_stop_tokens(text, stop)
return text
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Nebula Service endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = nebula("Tell me a joke.")
"""
params = self._invocation_params(stop, **kwargs)
prompt = prompt.strip()
response = completion_with_retry(
self,
prompt=prompt,
params=params,
url=f"{self.nebula_service_url}{self.nebula_service_path}",
)
_stop = params.get("stop_sequences")
return self._process_response(response, _stop)
[docs]
def make_request(
self: Nebula,
prompt: str,
url: str = f"{DEFAULT_NEBULA_SERVICE_URL}{DEFAULT_NEBULA_SERVICE_PATH}",
params: Optional[Dict] = None,
) -> Any:
"""Generate text from the model."""
params = params or {}
api_key = None
if self.nebula_api_key is not None:
api_key = self.nebula_api_key.get_secret_value()
headers = {
"Content-Type": "application/json",
"ApiKey": f"{api_key}",
}
body = {"prompt": prompt}
# add params to body
for key, value in params.items():
body[key] = value
# make request
response = requests.post(url, headers=headers, json=body)
if response.status_code != 200:
raise Exception(
f"Request failed with status code {response.status_code}"
f" and message {response.text}"
)
return json.loads(response.text)
def _create_retry_decorator(llm: Nebula) -> Callable[[Any], Any]:
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
max_retries = llm.max_retries if llm.max_retries is not None else 3
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type((RequestException, ConnectTimeout, ReadTimeout))
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
[docs]
def completion_with_retry(llm: Nebula, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
def _completion_with_retry(**_kwargs: Any) -> Any:
return make_request(llm, **_kwargs)
return _completion_with_retry(**kwargs)