Source code for langchain_community.llms.tongyi

from __future__ import annotations

import asyncio
import functools
import logging
from typing import (
    Any,
    AsyncIterable,
    AsyncIterator,
    Callable,
    Dict,
    Iterable,
    Iterator,
    List,
    Mapping,
    Optional,
    Tuple,
    TypeVar,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import Field
from requests.exceptions import HTTPError
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)
T = TypeVar("T")


def _create_retry_decorator(llm: Tongyi) -> Callable[[Any], Any]:
    min_seconds = 1
    max_seconds = 4
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterward
    return retry(
        reraise=True,
        stop=stop_after_attempt(llm.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(retry_if_exception_type(HTTPError)),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


[docs] def check_response(resp: Any) -> Any: """Check the response from the completion call.""" if resp["status_code"] == 200: return resp elif resp["status_code"] in [400, 401]: raise ValueError( f"status_code: {resp['status_code']} \n " f"code: {resp['code']} \n message: {resp['message']}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp['status_code']} \n " f"code: {resp['code']} \n message: {resp['message']}", response=resp, )
[docs] def generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _generate_with_retry(**_kwargs: Any) -> Any: resp = llm.client.call(**_kwargs) return check_response(resp) return _generate_with_retry(**kwargs)
[docs] def stream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator(llm) @retry_decorator def _stream_generate_with_retry(**_kwargs: Any) -> Any: responses = llm.client.call(**_kwargs) for resp in responses: yield check_response(resp) return _stream_generate_with_retry(**kwargs)
[docs] async def astream_generate_with_retry(llm: Tongyi, **kwargs: Any) -> Any: """Async version of `stream_generate_with_retry`. Because the dashscope SDK doesn't provide an async API, we wrap `stream_generate_with_retry` with an async generator.""" class _AioTongyiGenerator: def __init__(self, _llm: Tongyi, **_kwargs: Any): self.generator = stream_generate_with_retry(_llm, **_kwargs) def __aiter__(self) -> AsyncIterator[Any]: return self async def __anext__(self) -> Any: value = await asyncio.get_running_loop().run_in_executor( None, self._safe_next ) if value is not None: return value else: raise StopAsyncIteration def _safe_next(self) -> Any: try: return next(self.generator) except StopIteration: return None async for chunk in _AioTongyiGenerator(llm, **kwargs): yield chunk
[docs] def generate_with_last_element_mark(iterable: Iterable[T]) -> Iterator[Tuple[T, bool]]: """Generate elements from an iterable, and a boolean indicating if it is the last element.""" iterator = iter(iterable) try: item = next(iterator) except StopIteration: return for next_item in iterator: yield item, False item = next_item yield item, True
[docs] async def agenerate_with_last_element_mark( iterable: AsyncIterable[T], ) -> AsyncIterator[Tuple[T, bool]]: """Generate elements from an async iterable, and a boolean indicating if it is the last element.""" iterator = iterable.__aiter__() try: item = await iterator.__anext__() except StopAsyncIteration: return async for next_item in iterator: yield item, False item = next_item yield item, True
[docs] class Tongyi(BaseLLM): """Tongyi completion model integration. Setup: Install ``dashscope`` and set environment variables ``DASHSCOPE_API_KEY``. .. code-block:: bash pip install dashscope export DASHSCOPE_API_KEY="your-api-key" Key init args — completion params: model: str Name of Tongyi model to use. top_p: float Total probability mass of tokens to consider at each step. streaming: bool Whether to stream the results or not. Key init args — client params: api_key: Optional[str] Dashscope API KEY. If not passed in will be read from env var DASHSCOPE_API_KEY. max_retries: int Maximum number of retries to make when generating. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_community.llms import Tongyi llm = Tongyi( model="qwen-max", # top_p="...", # api_key="...", # other params... ) Invoke: .. code-block:: python input_text = "用50个字左右阐述,生命的意义在于" llm.invoke(input_text) .. code-block:: python '探索、成长、连接与爱——在有限的时间里,不断学习、体验、贡献并寻找与世界和谐共存之道,让每一刻充满价值与意义。' Stream: .. code-block:: python for chunk in llm.stream(input_text): print(chunk) .. code-block:: python 探索 | 、 | 成长 | 、连接与爱。 | 在有限的时间里,寻找个人价值, | 贡献于他人,共同体验世界的美好 | ,让世界因自己的存在而更 | 温暖。 Async: .. code-block:: python await llm.ainvoke(input_text) # stream: # async for chunk in llm.astream(input_text): # print(chunk) # batch: # await llm.abatch([input_text]) .. code-block:: python '探索、成长、连接与爱。在有限的时间里,寻找个人价值,贡献于他人和社会,体验丰富多彩的情感与经历,不断学习进步,让世界因自己的存在而更美好。' """ # noqa: E501 @property def lc_secrets(self) -> Dict[str, str]: return {"dashscope_api_key": "DASHSCOPE_API_KEY"} client: Any = None #: :meta private: model_name: str = Field(default="qwen-plus", alias="model") """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) top_p: float = 0.8 """Total probability mass of tokens to consider at each step.""" dashscope_api_key: Optional[str] = Field(default=None, alias="api_key") """Dashscope api key provide by Alibaba Cloud.""" streaming: bool = False """Whether to stream the results or not.""" max_retries: int = 10 """Maximum number of retries to make when generating.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "tongyi"
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["dashscope_api_key"] = get_from_dict_or_env( values, ["dashscope_api_key", "api_key"], "DASHSCOPE_API_KEY" ) try: import dashscope except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope`." ) try: values["client"] = dashscope.Generation except AttributeError: raise ValueError( "`dashscope` has no `Generation` attribute, this is likely " "due to an old version of the dashscope package. Try upgrading it " "with `pip install --upgrade dashscope`." ) return values
@property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Tongyi Qwen API.""" normal_params = { "model": self.model_name, "top_p": self.top_p, "api_key": self.dashscope_api_key, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: return {"model_name": self.model_name, **super()._identifying_params} def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations = [] if self.streaming: if len(prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None for chunk in self._stream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append([self._chunk_to_generation(generation)]) else: params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs) for prompt in prompts: completion = generate_with_retry(self, prompt=prompt, **params) generations.append( [Generation(**self._generation_from_qwen_resp(completion))] ) return LLMResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: generations = [] if self.streaming: if len(prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None generations.append([self._chunk_to_generation(generation)]) else: params: Dict[str, Any] = self._invocation_params(stop=stop, **kwargs) for prompt in prompts: completion = await asyncio.get_running_loop().run_in_executor( None, functools.partial( generate_with_retry, **{"llm": self, "prompt": prompt, **params} ), ) generations.append( [Generation(**self._generation_from_qwen_resp(completion))] ) return LLMResult( generations=generations, llm_output={ "model_name": self.model_name, }, ) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params: Dict[str, Any] = self._invocation_params( stop=stop, stream=True, **kwargs ) for stream_resp, is_last_chunk in generate_with_last_element_mark( stream_generate_with_retry(self, prompt=prompt, **params) ): chunk = GenerationChunk( **self._generation_from_qwen_resp(stream_resp, is_last_chunk) ) if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, ) yield chunk async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: params: Dict[str, Any] = self._invocation_params( stop=stop, stream=True, **kwargs ) async for stream_resp, is_last_chunk in agenerate_with_last_element_mark( astream_generate_with_retry(self, prompt=prompt, **params) ): chunk = GenerationChunk( **self._generation_from_qwen_resp(stream_resp, is_last_chunk) ) if run_manager: await run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, ) yield chunk def _invocation_params(self, stop: Any, **kwargs: Any) -> Dict[str, Any]: params = { **self._default_params, **kwargs, } if stop is not None: params["stop"] = stop if params.get("stream"): params["incremental_output"] = True return params @staticmethod def _generation_from_qwen_resp( resp: Any, is_last_chunk: bool = True ) -> Dict[str, Any]: # According to the response from dashscope, # each chunk's `generation_info` overwrites the previous one. # Besides, The `merge_dicts` method, # which is used to concatenate `generation_info` in `GenerationChunk`, # does not support merging of int type values. # Therefore, we adopt the `generation_info` of the last chunk # and discard the `generation_info` of the intermediate chunks. if is_last_chunk: return dict( text=resp["output"]["text"], generation_info=dict( finish_reason=resp["output"]["finish_reason"], request_id=resp["request_id"], token_usage=dict(resp["usage"]), ), ) else: return dict(text=resp["output"]["text"]) @staticmethod def _chunk_to_generation(chunk: GenerationChunk) -> Generation: return Generation( text=chunk.text, generation_info=chunk.generation_info, )