from __future__ import annotations
from concurrent.futures import Executor, ThreadPoolExecutor
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Iterator, List, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.utils import pre_init
from pydantic import BaseModel, ConfigDict, Field
from langchain_community.utilities.vertexai import (
create_retry_decorator,
get_client_info,
init_vertexai,
raise_vertex_import_error,
)
if TYPE_CHECKING:
from google.cloud.aiplatform.gapic import (
PredictionServiceAsyncClient,
PredictionServiceClient,
)
from google.cloud.aiplatform.models import Prediction
from google.protobuf.struct_pb2 import Value
from vertexai.language_models._language_models import (
TextGenerationResponse,
_LanguageModel,
)
from vertexai.preview.generative_models import Image
# This is for backwards compatibility
# We can remove after `langchain` stops importing it
_response_to_generation = None
stream_completion_with_retry = None
[docs]
def is_codey_model(model_name: str) -> bool:
"""Return True if the model name is a Codey model."""
return "code" in model_name
[docs]
def is_gemini_model(model_name: str) -> bool:
"""Return True if the model name is a Gemini model."""
return model_name is not None and "gemini" in model_name
[docs]
def completion_with_retry( # type: ignore[no-redef]
llm: VertexAI,
prompt: List[Union[str, "Image"]],
stream: bool = False,
is_gemini: bool = False,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
def _completion_with_retry(
prompt: List[Union[str, "Image"]], is_gemini: bool = False, **kwargs: Any
) -> Any:
if is_gemini:
return llm.client.generate_content(
prompt, stream=stream, generation_config=kwargs
)
else:
if stream:
return llm.client.predict_streaming(prompt[0], **kwargs)
return llm.client.predict(prompt[0], **kwargs)
return _completion_with_retry(prompt, is_gemini, **kwargs)
[docs]
async def acompletion_with_retry(
llm: VertexAI,
prompt: str,
is_gemini: bool = False,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = create_retry_decorator(llm, run_manager=run_manager)
@retry_decorator
async def _acompletion_with_retry(
prompt: str, is_gemini: bool = False, **kwargs: Any
) -> Any:
if is_gemini:
return await llm.client.generate_content_async(
prompt, generation_config=kwargs
)
return await llm.client.predict_async(prompt, **kwargs)
return await _acompletion_with_retry(prompt, is_gemini, **kwargs)
class _VertexAIBase(BaseModel):
model_config = ConfigDict(protected_namespaces=())
project: Optional[str] = None
"The default GCP project to use when making Vertex API calls."
location: str = "us-central1"
"The default location to use when making API calls."
request_parallelism: int = 5
"The amount of parallelism allowed for requests issued to VertexAI models. "
"Default is 5."
max_retries: int = 6
"""The maximum number of retries to make when generating."""
task_executor: ClassVar[Optional[Executor]] = Field(default=None, exclude=True)
stop: Optional[List[str]] = None
"Optional list of stop words to use when generating."
model_name: Optional[str] = None
"Underlying model name."
@classmethod
def _get_task_executor(cls, request_parallelism: int = 5) -> Executor:
if cls.task_executor is None:
cls.task_executor = ThreadPoolExecutor(max_workers=request_parallelism)
return cls.task_executor
class _VertexAICommon(_VertexAIBase): # type: ignore[override]
client: "_LanguageModel" = None #: :meta private:
client_preview: "_LanguageModel" = None #: :meta private:
model_name: str
"Underlying model name."
temperature: float = 0.0
"Sampling temperature, it controls the degree of randomness in token selection."
max_output_tokens: int = 128
"Token limit determines the maximum amount of text output from one prompt."
top_p: float = 0.95
"Tokens are selected from most probable to least until the sum of their "
"probabilities equals the top-p value. Top-p is ignored for Codey models."
top_k: int = 40
"How the model selects tokens for output, the next token is selected from "
"among the top-k most probable tokens. Top-k is ignored for Codey models."
credentials: Any = Field(default=None, exclude=True)
"The default custom credentials (google.auth.credentials.Credentials) to use "
"when making API calls. If not provided, credentials will be ascertained from "
"the environment."
n: int = 1
"""How many completions to generate for each prompt."""
streaming: bool = False
"""Whether to stream the results or not."""
@property
def _llm_type(self) -> str:
return "vertexai"
@property
def is_codey_model(self) -> bool:
return is_codey_model(self.model_name)
@property
def _is_gemini_model(self) -> bool:
return is_gemini_model(self.model_name)
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Gets the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _default_params(self) -> Dict[str, Any]:
params = {
"temperature": self.temperature,
"max_output_tokens": self.max_output_tokens,
"candidate_count": self.n,
}
if not self.is_codey_model:
params.update(
{
"top_k": self.top_k,
"top_p": self.top_p,
}
)
return params
@classmethod
def _try_init_vertexai(cls, values: Dict) -> None:
allowed_params = ["project", "location", "credentials"]
params = {k: v for k, v in values.items() if k in allowed_params}
init_vertexai(**params)
return None
def _prepare_params(
self,
stop: Optional[List[str]] = None,
stream: bool = False,
**kwargs: Any,
) -> dict:
stop_sequences = stop or self.stop
params_mapping = {"n": "candidate_count"}
params = {params_mapping.get(k, k): v for k, v in kwargs.items()}
params = {**self._default_params, "stop_sequences": stop_sequences, **params}
if stream or self.streaming:
params.pop("candidate_count")
return params
[docs]
@deprecated(
since="0.0.12",
removal="1.0",
alternative_import="langchain_google_vertexai.VertexAI",
)
class VertexAI(_VertexAICommon, BaseLLM): # type: ignore[override]
"""Google Vertex AI large language models."""
model_name: str = "text-bison"
"The name of the Vertex AI large language model."
tuned_model_name: Optional[str] = None
"The name of a tuned model. If provided, model_name is ignored."
@classmethod
def is_lc_serializable(self) -> bool:
return True
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "llms", "vertexai"]
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
tuned_model_name = values.get("tuned_model_name")
model_name = values["model_name"]
is_gemini = is_gemini_model(values["model_name"])
cls._try_init_vertexai(values)
try:
from vertexai.language_models import (
CodeGenerationModel,
TextGenerationModel,
)
from vertexai.preview.language_models import (
CodeGenerationModel as PreviewCodeGenerationModel,
)
from vertexai.preview.language_models import (
TextGenerationModel as PreviewTextGenerationModel,
)
if is_gemini:
from vertexai.preview.generative_models import (
GenerativeModel,
)
if is_codey_model(model_name):
model_cls = CodeGenerationModel
preview_model_cls = PreviewCodeGenerationModel
elif is_gemini:
model_cls = GenerativeModel
preview_model_cls = GenerativeModel
else:
model_cls = TextGenerationModel
preview_model_cls = PreviewTextGenerationModel
if tuned_model_name:
values["client"] = model_cls.get_tuned_model(tuned_model_name)
values["client_preview"] = preview_model_cls.get_tuned_model(
tuned_model_name
)
else:
if is_gemini:
values["client"] = model_cls(model_name=model_name)
values["client_preview"] = preview_model_cls(model_name=model_name)
else:
values["client"] = model_cls.from_pretrained(model_name)
values["client_preview"] = preview_model_cls.from_pretrained(
model_name
)
except ImportError:
raise_vertex_import_error()
if values["streaming"] and values["n"] > 1:
raise ValueError("Only one candidate can be generated with streaming!")
return values
[docs]
def get_num_tokens(self, text: str) -> int:
"""Get the number of tokens present in the text.
Useful for checking if an input will fit in a model's context window.
Args:
text: The string input to tokenize.
Returns:
The integer number of tokens in the text.
"""
try:
result = self.client_preview.count_tokens([text])
except AttributeError:
raise_vertex_import_error()
return result.total_tokens
def _response_to_generation(
self, response: TextGenerationResponse
) -> GenerationChunk:
"""Converts a stream response to a generation chunk."""
try:
generation_info = {
"is_blocked": response.is_blocked,
"safety_attributes": response.safety_attributes,
}
except Exception:
generation_info = None
return GenerationChunk(text=response.text, generation_info=generation_info)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
should_stream = stream if stream is not None else self.streaming
params = self._prepare_params(stop=stop, stream=should_stream, **kwargs)
generations: List[List[Generation]] = []
for prompt in prompts:
if should_stream:
generation = GenerationChunk(text="")
for chunk in self._stream(
prompt, stop=stop, run_manager=run_manager, **kwargs
):
generation += chunk
generations.append([generation])
else:
res = completion_with_retry( # type: ignore[misc]
self,
[prompt],
stream=should_stream,
is_gemini=self._is_gemini_model,
run_manager=run_manager,
**params,
)
generations.append(
[self._response_to_generation(r) for r in res.candidates]
)
return LLMResult(generations=generations)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
params = self._prepare_params(stop=stop, **kwargs)
generations = []
for prompt in prompts:
res = await acompletion_with_retry(
self,
prompt,
is_gemini=self._is_gemini_model,
run_manager=run_manager,
**params,
)
generations.append(
[self._response_to_generation(r) for r in res.candidates]
)
return LLMResult(generations=generations) # type: ignore[arg-type]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._prepare_params(stop=stop, stream=True, **kwargs)
for stream_resp in completion_with_retry( # type: ignore[misc]
self,
[prompt],
stream=True,
is_gemini=self._is_gemini_model,
run_manager=run_manager,
**params,
):
chunk = self._response_to_generation(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
)
yield chunk
[docs]
@deprecated(
since="0.0.12",
removal="1.0",
alternative_import="langchain_google_vertexai.VertexAIModelGarden",
)
class VertexAIModelGarden(_VertexAIBase, BaseLLM):
"""Vertex AI Model Garden large language models."""
client: "PredictionServiceClient" = (
None #: :meta private: # type: ignore[assignment]
)
async_client: "PredictionServiceAsyncClient" = (
None #: :meta private: # type: ignore[assignment]
)
endpoint_id: str
"A name of an endpoint where the model has been deployed."
allowed_model_args: Optional[List[str]] = None
"Allowed optional args to be passed to the model."
prompt_arg: str = "prompt"
result_arg: Optional[str] = "generated_text"
"Set result_arg to None if output of the model is expected to be a string."
"Otherwise, if it's a dict, provided an argument that contains the result."
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
from google.api_core.client_options import ClientOptions
from google.cloud.aiplatform.gapic import (
PredictionServiceAsyncClient,
PredictionServiceClient,
)
except ImportError:
raise_vertex_import_error()
if not values["project"]:
raise ValueError(
"A GCP project should be provided to run inference on Model Garden!"
)
client_options = ClientOptions(
api_endpoint=f"{values['location']}-aiplatform.googleapis.com"
)
client_info = get_client_info(module="vertex-ai-model-garden")
values["client"] = PredictionServiceClient(
client_options=client_options, client_info=client_info
)
values["async_client"] = PredictionServiceAsyncClient(
client_options=client_options, client_info=client_info
)
return values
@property
def endpoint_path(self) -> str:
return self.client.endpoint_path(
project=self.project, # type: ignore[arg-type]
location=self.location,
endpoint=self.endpoint_id,
)
@property
def _llm_type(self) -> str:
return "vertexai_model_garden"
def _prepare_request(self, prompts: List[str], **kwargs: Any) -> List["Value"]:
try:
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
except ImportError:
raise ImportError(
"protobuf package not found, please install it with"
" `pip install protobuf`"
)
instances = []
for prompt in prompts:
if self.allowed_model_args:
instance = {
k: v for k, v in kwargs.items() if k in self.allowed_model_args
}
else:
instance = {}
instance[self.prompt_arg] = prompt
instances.append(instance)
predict_instances = [
json_format.ParseDict(instance_dict, Value()) for instance_dict in instances
]
return predict_instances
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
instances = self._prepare_request(prompts, **kwargs)
response = self.client.predict(endpoint=self.endpoint_path, instances=instances)
return self._parse_response(response)
def _parse_response(self, predictions: "Prediction") -> LLMResult:
generations: List[List[Generation]] = []
for result in predictions.predictions:
generations.append(
[
Generation(text=self._parse_prediction(prediction))
for prediction in result
]
)
return LLMResult(generations=generations)
def _parse_prediction(self, prediction: Any) -> str:
if isinstance(prediction, str):
return prediction
if self.result_arg:
try:
return prediction[self.result_arg]
except KeyError:
if isinstance(prediction, str):
error_desc = (
"Provided non-None `result_arg` (result_arg="
f"{self.result_arg}). But got prediction of type "
f"{type(prediction)} instead of dict. Most probably, you"
"need to set `result_arg=None` during VertexAIModelGarden "
"initialization."
)
raise ValueError(error_desc)
else:
raise ValueError(f"{self.result_arg} key not found in prediction!")
return prediction
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
instances = self._prepare_request(prompts, **kwargs)
response = await self.async_client.predict(
endpoint=self.endpoint_path, instances=instances
)
return self._parse_response(response)