from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.utils import get_from_dict_or_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
[docs]
class Writer(LLM):
"""Writer large language models.
To use, you should have the ``writer-sdk`` Python package installed, and the
environment variable ``WRITER_API_KEY`` set with your API key.
Example:
.. code-block:: python
from langchain_community.llms import Writer as WriterLLM
from writerai import Writer, AsyncWriter
client = Writer()
async_client = AsyncWriter()
chat = WriterLLM(
client=client,
async_client=async_client
)
"""
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
api_key: Optional[SecretStr] = Field(default=None)
"""Writer API key."""
model_name: str = Field(default="palmyra-x-003-instruct", alias="model")
"""Model name to use."""
max_tokens: Optional[int] = None
"""The maximum number of tokens that the model can generate in the response."""
temperature: Optional[float] = 0.7
"""Controls the randomness of the model's outputs. Higher values lead to more
random outputs, while lower values make the model more deterministic."""
top_p: Optional[float] = None
"""Used to control the nucleus sampling, where only the most probable tokens
with a cumulative probability of top_p are considered for sampling, providing
a way to fine-tune the randomness of predictions."""
stop: Optional[List[str]] = None
"""Specifies stopping conditions for the model's output generation. This can
be an array of strings or a single string that the model will look for as a
signal to stop generating further tokens."""
best_of: Optional[int] = None
"""Specifies the number of completions to generate and return the best one.
Useful for generating multiple outputs and choosing the best based on some
criteria."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
model_config = ConfigDict(populate_by_name=True)
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling Writer API."""
return {
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"stop": self.stop,
"best_of": self.best_of,
**self.model_kwargs,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model": self.model_name,
**self._default_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "writer"
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validates that api key is passed and creates Writer clients."""
try:
from writerai import AsyncClient, Client
except ImportError as e:
raise ImportError(
"Could not import writerai python package. "
"Please install it with `pip install writerai`."
) from e
if not values.get("client"):
values.update(
{
"client": Client(
api_key=get_from_dict_or_env(
values, "api_key", "WRITER_API_KEY"
)
)
}
)
if not values.get("async_client"):
values.update(
{
"async_client": AsyncClient(
api_key=get_from_dict_or_env(
values, "api_key", "WRITER_API_KEY"
)
)
}
)
if not (
type(values.get("client")) is Client
and type(values.get("async_client")) is AsyncClient
):
raise ValueError(
"'client' attribute must be with type 'Client' and "
"'async_client' must be with type 'AsyncClient' from 'writerai' package"
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
params = {**self._identifying_params, **kwargs}
if stop is not None:
params.update({"stop": stop})
text = self.client.completions.create(prompt=prompt, **params).choices[0].text
return text
async def _acall(
self,
prompt: str,
stop: Optional[list[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
params = {**self._identifying_params, **kwargs}
if stop is not None:
params.update({"stop": stop})
response = await self.async_client.completions.create(prompt=prompt, **params)
text = response.choices[0].text
return text
def _stream(
self,
prompt: str,
stop: Optional[list[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = {**self._identifying_params, **kwargs, "stream": True}
if stop is not None:
params.update({"stop": stop})
response = self.client.completions.create(prompt=prompt, **params)
for chunk in response:
if run_manager:
run_manager.on_llm_new_token(chunk.value)
yield GenerationChunk(text=chunk.value)
async def _astream(
self,
prompt: str,
stop: Optional[list[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = {**self._identifying_params, **kwargs, "stream": True}
if stop is not None:
params.update({"stop": stop})
response = await self.async_client.completions.create(prompt=prompt, **params)
async for chunk in response:
if run_manager:
await run_manager.on_llm_new_token(chunk.value)
yield GenerationChunk(text=chunk.value)