Source code for langchain_community.retrievers.azure_ai_search
from __future__ import annotations
import json
from typing import Any, Dict, List, Optional
import aiohttp
import requests
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import get_from_dict_or_env, get_from_env
from pydantic import ConfigDict, model_validator
DEFAULT_URL_SUFFIX = "search.windows.net"
"""Default URL Suffix for endpoint connection - commercial cloud"""
[docs]
class AzureAISearchRetriever(BaseRetriever):
"""`Azure AI Search` service retriever.
Setup:
See here for more detail: https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/
We will need to install the below dependencies and set the required
environment variables:
.. code-block:: bash
pip install -U langchain-community azure-identity azure-search-documents
export AZURE_AI_SEARCH_SERVICE_NAME="<YOUR_SEARCH_SERVICE_NAME>"
export AZURE_AI_SEARCH_INDEX_NAME="<YOUR_SEARCH_INDEX_NAME>"
export AZURE_AI_SEARCH_API_KEY="<YOUR_API_KEY>"
Key init args:
content_key: str
top_k: int
index_name: str
Instantiate:
.. code-block:: python
from langchain_community.retrievers import AzureAISearchRetriever
retriever = AzureAISearchRetriever(
content_key="content", top_k=1, index_name="langchain-vector-demo"
)
Usage:
.. code-block:: python
retriever.invoke("here is my unstructured query string")
Use within a chain:
.. code-block:: python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import AzureChatOpenAI
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
Context: {context}
Question: {question}\"\"\"
)
llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo")
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("...")
""" # noqa: E501
service_name: str = ""
"""Name of Azure AI Search service"""
index_name: str = ""
"""Name of Index inside Azure AI Search service"""
api_key: str = ""
"""API Key. Both Admin and Query keys work, but for reading data it's
recommended to use a Query key."""
api_version: str = "2023-11-01"
"""API version"""
aiosession: Optional[aiohttp.ClientSession] = None
"""ClientSession, in case we want to reuse connection for better performance."""
content_key: str = "content"
"""Key in a retrieved result to set as the Document page_content."""
top_k: Optional[int] = None
"""Number of results to retrieve. Set to None to retrieve all results."""
filter: Optional[str] = None
"""OData $filter expression to apply to the search query."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that service name, index name and api key exists in environment."""
values["service_name"] = get_from_dict_or_env(
values, "service_name", "AZURE_AI_SEARCH_SERVICE_NAME"
)
values["index_name"] = get_from_dict_or_env(
values, "index_name", "AZURE_AI_SEARCH_INDEX_NAME"
)
values["api_key"] = get_from_dict_or_env(
values, "api_key", "AZURE_AI_SEARCH_API_KEY"
)
return values
def _build_search_url(self, query: str) -> str:
url_suffix = get_from_env("", "AZURE_AI_SEARCH_URL_SUFFIX", DEFAULT_URL_SUFFIX)
if url_suffix in self.service_name and "https://" in self.service_name:
base_url = f"{self.service_name}/"
elif url_suffix in self.service_name and "https://" not in self.service_name:
base_url = f"https://{self.service_name}/"
elif url_suffix not in self.service_name and "https://" in self.service_name:
base_url = f"{self.service_name}.{url_suffix}/"
elif (
url_suffix not in self.service_name and "https://" not in self.service_name
):
base_url = f"https://{self.service_name}.{url_suffix}/"
else:
# pass to Azure to throw a specific error
base_url = self.service_name
endpoint_path = f"indexes/{self.index_name}/docs?api-version={self.api_version}"
top_param = f"&$top={self.top_k}" if self.top_k else ""
filter_param = f"&$filter={self.filter}" if self.filter else ""
return base_url + endpoint_path + f"&search={query}" + top_param + filter_param
@property
def _headers(self) -> Dict[str, str]:
return {
"Content-Type": "application/json",
"api-key": self.api_key,
}
def _search(self, query: str) -> List[dict]:
search_url = self._build_search_url(query)
response = requests.get(search_url, headers=self._headers)
if response.status_code != 200:
raise Exception(f"Error in search request: {response}")
return json.loads(response.text)["value"]
async def _asearch(self, query: str) -> List[dict]:
search_url = self._build_search_url(query)
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=self._headers) as response:
response_json = await response.json()
else:
async with self.aiosession.get(
search_url, headers=self._headers
) as response:
response_json = await response.json()
return response_json["value"]
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
search_results = self._search(query)
return [
Document(page_content=result.pop(self.content_key), metadata=result)
for result in search_results
]
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
search_results = await self._asearch(query)
return [
Document(page_content=result.pop(self.content_key), metadata=result)
for result in search_results
]
# For backwards compatibility
[docs]
class AzureCognitiveSearchRetriever(AzureAISearchRetriever):
"""`Azure Cognitive Search` service retriever.
This version of the retriever will soon be
depreciated. Please switch to AzureAISearchRetriever
"""