Source code for langchain_community.retrievers.azure_ai_search

from __future__ import annotations

import json
from typing import Any, Dict, List, Optional

import aiohttp
import requests
from langchain_core.callbacks import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import get_from_dict_or_env, get_from_env
from pydantic import ConfigDict, model_validator

DEFAULT_URL_SUFFIX = "search.windows.net"
"""Default URL Suffix for endpoint connection - commercial cloud"""


[docs] class AzureAISearchRetriever(BaseRetriever): """`Azure AI Search` service retriever. Setup: See here for more detail: https://python.langchain.com/docs/integrations/retrievers/azure_ai_search/ We will need to install the below dependencies and set the required environment variables: .. code-block:: bash pip install -U langchain-community azure-identity azure-search-documents export AZURE_AI_SEARCH_SERVICE_NAME="<YOUR_SEARCH_SERVICE_NAME>" export AZURE_AI_SEARCH_INDEX_NAME="<YOUR_SEARCH_INDEX_NAME>" export AZURE_AI_SEARCH_API_KEY="<YOUR_API_KEY>" Key init args: content_key: str top_k: int index_name: str Instantiate: .. code-block:: python from langchain_community.retrievers import AzureAISearchRetriever retriever = AzureAISearchRetriever( content_key="content", top_k=1, index_name="langchain-vector-demo" ) Usage: .. code-block:: python retriever.invoke("here is my unstructured query string") Use within a chain: .. code-block:: python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import AzureChatOpenAI prompt = ChatPromptTemplate.from_template( \"\"\"Answer the question based only on the context provided. Context: {context} Question: {question}\"\"\" ) llm = AzureChatOpenAI(azure_deployment="gpt-35-turbo") def format_docs(docs): return "\\n\\n".join(doc.page_content for doc in docs) chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) chain.invoke("...") """ # noqa: E501 service_name: str = "" """Name of Azure AI Search service""" index_name: str = "" """Name of Index inside Azure AI Search service""" api_key: str = "" """API Key. Both Admin and Query keys work, but for reading data it's recommended to use a Query key.""" api_version: str = "2023-11-01" """API version""" aiosession: Optional[aiohttp.ClientSession] = None """ClientSession, in case we want to reuse connection for better performance.""" content_key: str = "content" """Key in a retrieved result to set as the Document page_content.""" top_k: Optional[int] = None """Number of results to retrieve. Set to None to retrieve all results.""" filter: Optional[str] = None """OData $filter expression to apply to the search query.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that service name, index name and api key exists in environment.""" values["service_name"] = get_from_dict_or_env( values, "service_name", "AZURE_AI_SEARCH_SERVICE_NAME" ) values["index_name"] = get_from_dict_or_env( values, "index_name", "AZURE_AI_SEARCH_INDEX_NAME" ) values["api_key"] = get_from_dict_or_env( values, "api_key", "AZURE_AI_SEARCH_API_KEY" ) return values def _build_search_url(self, query: str) -> str: url_suffix = get_from_env("", "AZURE_AI_SEARCH_URL_SUFFIX", DEFAULT_URL_SUFFIX) if url_suffix in self.service_name and "https://" in self.service_name: base_url = f"{self.service_name}/" elif url_suffix in self.service_name and "https://" not in self.service_name: base_url = f"https://{self.service_name}/" elif url_suffix not in self.service_name and "https://" in self.service_name: base_url = f"{self.service_name}.{url_suffix}/" elif ( url_suffix not in self.service_name and "https://" not in self.service_name ): base_url = f"https://{self.service_name}.{url_suffix}/" else: # pass to Azure to throw a specific error base_url = self.service_name endpoint_path = f"indexes/{self.index_name}/docs?api-version={self.api_version}" top_param = f"&$top={self.top_k}" if self.top_k else "" filter_param = f"&$filter={self.filter}" if self.filter else "" return base_url + endpoint_path + f"&search={query}" + top_param + filter_param @property def _headers(self) -> Dict[str, str]: return { "Content-Type": "application/json", "api-key": self.api_key, } def _search(self, query: str) -> List[dict]: search_url = self._build_search_url(query) response = requests.get(search_url, headers=self._headers) if response.status_code != 200: raise Exception(f"Error in search request: {response}") return json.loads(response.text)["value"] async def _asearch(self, query: str) -> List[dict]: search_url = self._build_search_url(query) if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.get(search_url, headers=self._headers) as response: response_json = await response.json() else: async with self.aiosession.get( search_url, headers=self._headers ) as response: response_json = await response.json() return response_json["value"] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: search_results = self._search(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ] async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun ) -> List[Document]: search_results = await self._asearch(query) return [ Document(page_content=result.pop(self.content_key), metadata=result) for result in search_results ]
# For backwards compatibility
[docs] class AzureCognitiveSearchRetriever(AzureAISearchRetriever): """`Azure Cognitive Search` service retriever. This version of the retriever will soon be depreciated. Please switch to AzureAISearchRetriever """