from __future__ import annotations
from typing import Any, Callable, Dict, Iterable, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import ConfigDict, Field
[docs]
def default_preprocessing_func(text: str) -> List[str]:
return text.split()
[docs]
class BM25Retriever(BaseRetriever):
"""`BM25` retriever without Elasticsearch."""
vectorizer: Any = None
""" BM25 vectorizer."""
docs: List[Document] = Field(repr=False)
""" List of documents."""
k: int = 4
""" Number of documents to return."""
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func
""" Preprocessing function to use on the text before BM25 vectorization."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
[docs]
@classmethod
def from_texts(
cls,
texts: Iterable[str],
metadatas: Optional[Iterable[dict]] = None,
ids: Optional[Iterable[str]] = None,
bm25_params: Optional[Dict[str, Any]] = None,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
**kwargs: Any,
) -> BM25Retriever:
"""
Create a BM25Retriever from a list of texts.
Args:
texts: A list of texts to vectorize.
metadatas: A list of metadata dicts to associate with each text.
ids: A list of ids to associate with each text.
bm25_params: Parameters to pass to the BM25 vectorizer.
preprocess_func: A function to preprocess each text before vectorization.
**kwargs: Any other arguments to pass to the retriever.
Returns:
A BM25Retriever instance.
"""
try:
from rank_bm25 import BM25Okapi
except ImportError:
raise ImportError(
"Could not import rank_bm25, please install with `pip install "
"rank_bm25`."
)
texts_processed = [preprocess_func(t) for t in texts]
bm25_params = bm25_params or {}
vectorizer = BM25Okapi(texts_processed, **bm25_params)
metadatas = metadatas or ({} for _ in texts)
if ids:
docs = [
Document(page_content=t, metadata=m, id=i)
for t, m, i in zip(texts, metadatas, ids)
]
else:
docs = [
Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)
]
return cls(
vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
)
[docs]
@classmethod
def from_documents(
cls,
documents: Iterable[Document],
*,
bm25_params: Optional[Dict[str, Any]] = None,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
**kwargs: Any,
) -> BM25Retriever:
"""
Create a BM25Retriever from a list of Documents.
Args:
documents: A list of Documents to vectorize.
bm25_params: Parameters to pass to the BM25 vectorizer.
preprocess_func: A function to preprocess each text before vectorization.
**kwargs: Any other arguments to pass to the retriever.
Returns:
A BM25Retriever instance.
"""
texts, metadatas, ids = zip(
*((d.page_content, d.metadata, d.id) for d in documents)
)
return cls.from_texts(
texts=texts,
bm25_params=bm25_params,
metadatas=metadatas,
ids=ids,
preprocess_func=preprocess_func,
**kwargs,
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
processed_query = self.preprocess_func(query)
return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
return return_docs