Source code for langchain_community.retrievers.chatgpt_plugin_retriever
from __future__ import annotations
from typing import List, Optional
import aiohttp
import requests
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import ConfigDict
[docs]
class ChatGPTPluginRetriever(BaseRetriever):
"""`ChatGPT plugin` retriever."""
url: str
"""URL of the ChatGPT plugin."""
bearer_token: str
"""Bearer token for the ChatGPT plugin."""
top_k: int = 3
"""Number of documents to return."""
filter: Optional[dict] = None
"""Filter to apply to the results."""
aiosession: Optional[aiohttp.ClientSession] = None
"""Aiohttp session to use for requests."""
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
url, json, headers = self._create_request(query)
response = requests.post(url, json=json, headers=headers)
results = response.json()["results"][0]["results"]
docs = []
for d in results:
content = d.pop("text")
metadata = d.pop("metadata", d)
if metadata.get("source_id"):
metadata["source"] = metadata.pop("source_id")
docs.append(Document(page_content=content, metadata=metadata))
return docs
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
url, json, headers = self._create_request(query)
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=json) as response:
res = await response.json()
else:
async with self.aiosession.post(
url, headers=headers, json=json
) as response:
res = await response.json()
results = res["results"][0]["results"]
docs = []
for d in results:
content = d.pop("text")
metadata = d.pop("metadata", d)
if metadata.get("source_id"):
metadata["source"] = metadata.pop("source_id")
docs.append(Document(page_content=content, metadata=metadata))
return docs
def _create_request(self, query: str) -> tuple[str, dict, dict]:
url = f"{self.url}/query"
json = {
"queries": [
{
"query": query,
"filter": self.filter,
"top_k": self.top_k,
}
]
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.bearer_token}",
}
return url, json, headers